Skip to main content
Log in

Fractional Fourier transform of Lorentz-Gauss vortex beams

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naqwi A, Durst F. Focus of diode laser beams: A simple mathematical model. Appl Opt, 1990, 29: 1780–1785

    Article  ADS  Google Scholar 

  2. Yang J, Chen T, Ding G, et al. Focusing of diode laser beams: a partially coherent Lorentz model. Proc SPIE, 2008, 6824: 68240A

    Article  ADS  Google Scholar 

  3. Gawhary O E, Severini S. Lorentz beams as a basis for a new class of rectangular symmetric optical fields. Opt Commun, 2007, 269: 274–284

    Article  ADS  Google Scholar 

  4. Torre A, Evans W A B, Gawhary O E, et al. Relativistic Hermite polynomials and Lorentz beams. J Opt A-Pure Appl Opt, 2008, 10: 115007

    Article  ADS  Google Scholar 

  5. Gawhary O E, Severini S. Lorentz beams and symmetry properties in paraxial optics. J Opt A-Pure Appl Opt, 2006, 8: 409–414

    Article  ADS  Google Scholar 

  6. Zhou G. Focal shift of focused truncated Lorentz-Gauss beam. J Opt Soc Am A, 2008, 25: 2594–2599

    Article  ADS  Google Scholar 

  7. Zhou G. Beam propagation factors of a Lorentz-Gauss beam. Appl Phys B, 2009, 96: 149–153

    Article  ADS  Google Scholar 

  8. Li J, Chen Y, Xu S, et al. Diffraction of Lorentz-Gauss beam in uniaxial crystals: Orthogonal to optical axis. Front Optoelectron China, 2010, 3: 292–302

    Article  Google Scholar 

  9. Zhao C, Cai Y. Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis. J Mod Opt, 2010, 57: 375–384

    Article  ADS  MATH  Google Scholar 

  10. Du W, Zhao C, Cai Y. Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system. Opt Lasers in Eng, 2011, 49: 25–31

    Article  ADS  Google Scholar 

  11. Zhou P, Wang X, Ma Y, et al. Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere. J Opt, 2010, 12: 015409

    Article  ADS  Google Scholar 

  12. Chen R, Raymond Ooi C H. Evolution and collapse of a Lorentz beam in Kerr medium. PIERS, 2011, 121: 39–52

    Article  Google Scholar 

  13. Jiang Y, Huang K, Lu X. Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle. Opt Express, 2011, 19: 9708–9713

    Article  ADS  Google Scholar 

  14. Zhou P, Wang X, Ma Y, et al. Propagation properties of a Lorentz beam array. Appl Opt, 2010, 49: 2497–2503

    Article  Google Scholar 

  15. Zhou G. Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system. Opt Express, 2010, 18: 4637–4643

    Article  ADS  Google Scholar 

  16. Eyyuboğlu H T. Partially coherent Lorentz Gaussian beam and its scintillations. Appl Phys B, 2011, 103: 755–762

    Article  ADS  Google Scholar 

  17. Yu H, Xiong L, Lü B. Nonparaxial Lorentz and Lorentz-Gauss beams. Optik, 2010, 121: 1455–1461

    Article  ADS  Google Scholar 

  18. He H, Friese M E, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett, 1995, 75: 826–829

    Article  ADS  Google Scholar 

  19. Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers. Opt Commun, 2002, 207: 169–175

    Article  ADS  Google Scholar 

  20. Gibson G, Courtial J, Padgett M, et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express, 2004, 12: 5448–5456

    Article  ADS  Google Scholar 

  21. Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. J Opt Soc Am A 1993, 10: 2181–2186

    Article  ADS  Google Scholar 

  22. Namias V. The fractional order Fourier transform and its application to quantum mechanics. J Inst Math Appl, 1980, 25: 241–265

    Article  MathSciNet  MATH  Google Scholar 

  23. Lohmann A W, Mendlovic D, Zalevsky Z. Fractional transformations in optics. Prog Opt, 1998, 38: 263–342

    Article  Google Scholar 

  24. Lin Q, Cai Y. Fractional Fourier transform for partially coherent Gaussian-Schell model beams. Opt Lett, 2002, 27: 1672–1674

    Article  ADS  Google Scholar 

  25. Cai Y, Lin Q. Transformation and spectrum properties of partially coherent beams in the fractional Fourier transform plane. J Opt Soc Am A, 2003, 20: 1528–1536

    Article  MathSciNet  ADS  Google Scholar 

  26. Zhao D, Mao H, Liu H, et al. Propagation of Hermite-cosh-Gaussian beams in apertured fractional Fourier transforming systems. Opt Commun, 2004, 236: 225–235

    Article  ADS  Google Scholar 

  27. Du X, Zhao D. Fractional Fourier transform of truncated elliptical Gaussian beams. Appl Opt, 2006, 45: 9049–9052

    Article  ADS  Google Scholar 

  28. Du X, Zhao D. Fractional Fourier transforms of elliptical Hermite-cosh-Gaussian beams. Phys Lett A, 2007, 366: 271–275

    Article  ADS  Google Scholar 

  29. Zhou G. Fractional Fourier transform of Ince-Gaussian beams. J Opt Soc Am A, 2010, 26: 2586–2591

    Article  ADS  Google Scholar 

  30. Gradshteyn I S, Ryzhik I M. Tables of Integrals, Series, and Products. New York: Academic, 1980

    Google Scholar 

  31. Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 1992, 45: 8185–8189

    Article  ADS  Google Scholar 

  32. Gao C, Wei G, Webe H. Orbital angular momentum of the laser beam and the second order intensity moments. Sci China Ser A-Math Phys Astron, 2000, 30: 823–827

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoQuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, G., Wang, X. & Chu, X. Fractional Fourier transform of Lorentz-Gauss vortex beams. Sci. China Phys. Mech. Astron. 56, 1487–1494 (2013). https://doi.org/10.1007/s11433-013-5153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5153-y

Keywords

Navigation