Skip to main content
Log in

Measurements of heat transport by turbulent Rayleigh-Bénard convection in rectangular cells of widely varying aspect ratios

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

High-precision measurements of the Nusselt number Nu for Rayleigh-Bénard (RB) convection have been made in rectangular cells of water (Prandtl number Pr ≈ 5 and 7) with aspect ratios (Γ x y ) varying between (1, 0.3) and (20.8, 6.3). For each cell the data cover a range of a little over a decade of Rayleigh number Ra and for all cells they jointly span the range 6×105 < Ra<1011. The two implicit equations of the Grossmann-Lohse (GL) model together with the empirical finite conductivity correction factor f(X) were fitted to obtain estimates of Nu in the presence of perfectly conducting plates, and the obtained Nu is independent of the cells’ aspect ratios. A combination of two-power-law, Nu = 0.025Ra 0.357+0.525Ra 0.168, can be used to describe Nu (Ra). The fitted exponents 0.357 and 0.168 are respectively close to the predictions 1/3 and 1/5 of the II u and IV u regimes of the GL model. Furthermore, a clear transition from the II u regime to the IV u regime with increasing Ra is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlers G, Grossmann S, Lohse D. Heat transfer and large-scale dynamics in turbulent Rayleigh-Bénard convection. Rev Mod Phys, 2009, 81:503–537

    Article  ADS  Google Scholar 

  2. Lohse D, Xia K Q. Small-scale properties of turbulent Rayleigh-Bénard convection. Annu Rev Fluid Mech, 2010, 42:335–364

    Article  ADS  Google Scholar 

  3. Castaing B, Gunaratne G, Heslot F, et al. Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J Fluid Mech, 1989, 204:1–10

    Article  ADS  Google Scholar 

  4. Kerr R M. Rayleigh number scaling in numerical convection. J Fluid Mech, 1996, 310:139–179

    Article  ADS  MATH  Google Scholar 

  5. Chavanne X, Chilla F, Castaing B, et al. Observation of the ultimate regime in Rayleigh-Bénard convection. Phys Rev Lett, 1997, 79:3648–3651

    Article  ADS  Google Scholar 

  6. Du Y B, Tong P. Turbulent thermal convection in a cell with ordered rough boundaries. J Fluid Mech, 2000, 407:57–84

    Article  ADS  MATH  Google Scholar 

  7. Niemela J J, Skrbek L, Sreenivasan K R, et al. Turbulent convection at very high Rayleigh numbers. Nature, 2000, 404:837–840

    Article  ADS  Google Scholar 

  8. Xia K Q, Lam S, Zhou S Q. Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection. Phys Rev Lett, 2002, 88:064501

    Article  ADS  Google Scholar 

  9. Verzicco R, Camussi R. Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J Fluid Mech, 2003, 477:19–49

    Article  ADS  MATH  Google Scholar 

  10. Roche P E, Gauthier F, Chabaud B, et al. Ultimate regime of convection: robustness to poor thermal reservoirs. Phys Fluids, 2005, 17: 115107

    Article  ADS  Google Scholar 

  11. Shishkina O, Wagner C. Local heat fluxes in turbulent Rayleigh-Bénard convection. Phys Fluids, 2007, 19:085107

    Article  ADS  Google Scholar 

  12. Funfschilling D, Bodenschatz E, Ahlers G. Search for the ‘ultimate state’ in turbulent Rayleigh-Bénard convection. Phys Rev Lett, 2009, 103:014503

    Article  ADS  Google Scholar 

  13. Song H, Tong P. Scaling laws in turbulent Rayleigh-Bénard convection under different geometry. Europhys Lett, 2010, 90:44001

    Article  ADS  Google Scholar 

  14. Stevens R J A M, Lohse D, Verzicco R. Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J Fluid Mech, 2011, 688:31–43

    Article  ADS  MATH  Google Scholar 

  15. He X Z, Funfschilling D, Nobach H, et al. Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys Rev Lett, 2012, 108:024502

    Article  ADS  Google Scholar 

  16. Urban P, Hanzelka P, Kralik T, et al. Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh-Bénard convection at very high Rayleigh numbers. Phys Rev Lett, 2012, 109: 154301

    Article  ADS  Google Scholar 

  17. Shraiman B I, Siggia E D. Heat transport in high-Rayleigh-number convection. Phys Rev A, 1990, 42:3650–3653

    Article  ADS  Google Scholar 

  18. Grossmann S, Lohse D. Scaling in thermal convection: A unifying theory. J Fluid Mech, 2000, 407:27–56

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Grossmann S, Lohse D. Thermal convection for large Prandtl numbers. Phys Rev Lett, 2001, 86:3316–3319

    Article  ADS  Google Scholar 

  20. Grossmann S, Lohse D. Multiple scaling in the ultimate regime of thermal convection. Phys Fluids, 2011, 23:045108

    Article  ADS  Google Scholar 

  21. Dubrulle E. Scaling in large Prandtl number turbulent thermal convection. Eur Phys J B, 2002, 28, 361–367

    Article  ADS  Google Scholar 

  22. Funfschilling D, Brown E, Nikolaenko A, et al. Heat transport by turbulent Rayleigh-Bénard convection in cylindrical samples with aspect ratio one and larger. J Fluid Mech, 2005, 536:145–154

    Article  ADS  MATH  Google Scholar 

  23. Sun C, Ren L Y, Song H, et al. Heat transport by turbulent Rayleigh-Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio. J Fluid Mech, 2005, 542:165–174

    Article  ADS  MATH  Google Scholar 

  24. Roche P E, Gauthier F, Kaiser R, et al. On the triggering of the ultimate regime of convection. New J Phys, 2010, 12:085014

    Article  Google Scholar 

  25. DU Puits R, Resagk R, Thess A. Breakdown of wind in turbulent thermal convection. Phys Rev E, 2007, 75:016302

    Article  ADS  Google Scholar 

  26. Xia K Q, Sun C, Cheung Y H. Large scale velocity structures in turbulent thermal convection. In: 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2008

    Google Scholar 

  27. Bailon-cuba J, Emran M S, Schumacher J. Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J Fluid Mech, 2010, 655:152–173

    Article  ADS  MATH  Google Scholar 

  28. van der Poel E P, Stevens R J A M, Lohse D. Connecting flow structures and heat flux in turbulent Rayleigh—Bénard convection. Phys Rev E, 2011, 84:045303 (R)

    ADS  Google Scholar 

  29. Zhou Q, Liu B F, Li C M, et al. Aspect ratio dependence of heat transport by turbulent Rayleigh-Bénard convection in rectangular cells. J Fluid Mech, 2012, 710:260–276

    Article  MathSciNet  ADS  Google Scholar 

  30. Verzicco R. Effects of nonperfect thermal sources in turbulent thermal convection. Phys Fluids, 2004, 16:1965–1979

    Article  ADS  Google Scholar 

  31. Shang X D, Qiu X L, Tong P, et al. Measured local heat transport in turbulent Rayleigh-Bénard convection. Phys Rev Lett, 2003, 90: 074501

    Article  ADS  Google Scholar 

  32. Brown E, Nikolaenko A, Funfschilling D, et al. Heat transport in turbulent Rayleigh-Bénard convection: effect of finite top- and bottom-plate conductivities. Phys Fluids, 2005, 17:075108

    Article  ADS  Google Scholar 

  33. Ahlers G, Xu X C. Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection. Phys Rev Lett, 2001, 86:3320–3323

    Article  ADS  Google Scholar 

  34. Xia K Q, Lam S, Zhou S Q. Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection. Phys Rev Lett, 2002, 88:064501

    Article  ADS  Google Scholar 

  35. Press W H, Teukolsky S, Vetterling W, et al. Numerical Recipes. Cambridge: Cambridge University Press, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Lu, H., Liu, B. et al. Measurements of heat transport by turbulent Rayleigh-Bénard convection in rectangular cells of widely varying aspect ratios. Sci. China Phys. Mech. Astron. 56, 989–994 (2013). https://doi.org/10.1007/s11433-013-5063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5063-z

Keywords

Navigation