Skip to main content
Log in

Numerical study of ambient pressure for laser-induced bubble near a rigid boundary

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brennen C E. Cavitation and Bubble Dynamics. London: Oxford University Press, 1995

    Google Scholar 

  2. Werner L, Thomas K. Physics of bubble oscillations. Rep Prog Phys, 2010, 73(10): 106501

    Article  Google Scholar 

  3. Brujan E A, Keen G S, Vogel A, et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys Fluids, 2002, 14(1): 85–92

    Article  ADS  Google Scholar 

  4. Song W D, Hong M H, Lukyanchuk B, et al. Laser-induced cavitation bubbles for cleaning of solid surfaces. J Appl Phys, 2004, 95(6): 2952–2956

    Article  ADS  Google Scholar 

  5. Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles. J Fluid Mech, 1998, 361(1): 75–116

    Article  ADS  MATH  Google Scholar 

  6. Zhang A M, Yao X L, Li J, et al. Comparison between the 3D numerical simulation and experiment of the bubble near different boundaries. Sci China-Phys Mech Astron, 2008, 51(12): 1914–1925

    Article  MathSciNet  ADS  Google Scholar 

  7. Kondic L, Yuan C, Chan C K. Ambient pressure and single-bubble sonoluminescence. Phys Rev E, 1998, 57(1): R32–R35

    Article  ADS  Google Scholar 

  8. Dan M, Cheeke J D N, Kondic L. Ambient pressure effect on single-bubble sonoluminescence. Phys Rev Lett, 1999, 83(9): 1870–1873

    Article  ADS  Google Scholar 

  9. Brujan E A, Hecht D S, Lee F, et al. Properties of luminescence from laser-created bubbles in pressurized water. Phys Rev E, 2005, 72(6): 066310

    Article  ADS  Google Scholar 

  10. Plesset M S. The dynamics of cavitation bubbles. J Appl Mech, 1949, 16: 277–282

    Google Scholar 

  11. Gregorčič P, Petkovšek R, Možina J. Investigation of a cavitation bubble between a rigid boundary and a free surface. J Appl Phys, 2007, 102(9): 094904–094908

    Article  ADS  Google Scholar 

  12. Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag, 1917, 34: 94–98

    MATH  Google Scholar 

  13. Plesset M S, Chapman R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech, 1971, 47(02): 283–290

    Article  ADS  Google Scholar 

  14. Rattray M. Perturbation effects in cavitation bubble dynamics. Dissertation for the Doctoral Degree. Pesadena Calif: California Institute of Technology, 1951

    Google Scholar 

  15. Chen H S, Wang J D, Li Y J, et al. Effect of hydrodynamic pressures near solid surfaces in the incubation stage of cavitation erosion. Proc Inst Mech Eng Part J J Eng Tribol, 2008, 222(J4): 523–531

    Google Scholar 

  16. Luo J, Li J, Dong G N. Two-dimensional simulation of the collapse of vapor bubbles near a wall. J Fluids Eng-Trans ASME, 2008, 130(9): 091301–091304

    Article  Google Scholar 

  17. Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 1981, 39(1): 201–225

    Article  ADS  MATH  Google Scholar 

  18. Li J, Chen H S. Numerical simulation of micro bubble collapse near solid wall in fluent environment (in chinese). Tribol, 2008, 28(4): 311–315

    MATH  Google Scholar 

  19. Tian W X, Qiu S Z, Su G H, et al. Numerical solution on spherical vacuum bubble collapse using MPS method. J Eng Gas Turbines Power, 2010, 132(10): 102920–102925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Zhang, H., Han, B. et al. Numerical study of ambient pressure for laser-induced bubble near a rigid boundary. Sci. China Phys. Mech. Astron. 55, 1291–1296 (2012). https://doi.org/10.1007/s11433-012-4780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4780-z

Keywords

Navigation