Skip to main content
Log in

Variational bounds of the effective moduli of piezoelectric composites

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials. The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotropic elastic medium. The electromechanical fields in the inhomogeneous piezoelectrics are simulated by introducing into the homogeneous reference medium certain eigenstresses and eigen electric fields. A closed-form solution can be obtained for the disturbance fields, which is convenient for the manipulation of the energy functional. As an application, a two-phase piezoelectric composite with nonpiezoelectric matrix is considered. Expressions of upper and lower bounds for the overall electromechanical moduli of the composite can be developed. These bounds are shown better than the Voigt-Reuss type ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashin Z, Shtrikman T. On some variational principle in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids, 1962, 10: 335–342

    Article  MathSciNet  ADS  Google Scholar 

  2. Hashin Z, Shtrikman T. A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids, 1963, 11: 127–140

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Walpole L J. On bounds for the overall elastic moduli of inhomogeneous system-I. J Mech Phys Solids, 1966, 14: 151–162

    Article  ADS  MATH  Google Scholar 

  4. Walpole L J. On bounds for the overall elastic moduli of inhomogeneous system-II. J Mech Phys Solids, 1966, 14: 289–301

    Article  ADS  Google Scholar 

  5. Walpole L J. On the overall elastic moduli of composite materials. J Mech Phys Solids, 1969, 17: 235–251

    Article  ADS  MATH  Google Scholar 

  6. Willis J R. Bounds and self-consistent estimates for the overall properties of anisotropic composites. J Mech Phys solids, 1977, 25: 185–202

    Article  ADS  MATH  Google Scholar 

  7. Newnham R, Skinner D, Cross L. Connectivity and piezoelectripyroelectric composites. Mater Res Bull, 1978, 13: 525–536

    Article  Google Scholar 

  8. Chan H L W, Unsworth J. Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control, 1989, 36: 434–441

    Article  Google Scholar 

  9. Dunn M L, Taya M. An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc R Soc London A-Math Phys Sci, 1993, 443(1918): 265–287

    Article  ADS  MATH  Google Scholar 

  10. Dunn M L, Taya M. Electromechanical properties of porous piezoelectric ceramics. J Am Ceram Soc, 1993, 76: 1697–1706

    Article  Google Scholar 

  11. Benveniste Y. On the micromechanics of fibrous piezoelectric composites. Mech Mater, 1994, 18: 183–193

    Article  Google Scholar 

  12. Benveniste Y. Universal relations in piezoelectric composites with eigenstress and polarization fields. Part I: Binary media-local fields and effective behavior. J Appl Mech, 1993, 60(2): 265–269

    Article  MathSciNet  MATH  Google Scholar 

  13. Benveniste Y. Universal relations in piezoelectric composites with eigenstress and polarization fields. Part II: Multiphase media-effective behavior. J Appl Mech, 1993, 60(2): 270–275

    Article  MathSciNet  Google Scholar 

  14. Benveniste Y, Dvorak G J. Uniform fields and universal relations in piezoelectric composites. J Mech Phys Solids, 1992, 40: 1295–1312

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Li J Y, Dunn M L. Analysis of microstructural fields in heterogeneous piezoelectric solids. Int J Eng Sci, 1999, 37: 665–685

    Article  Google Scholar 

  16. Olson T, Avellaneda M. Effective dielectric and elastic constants of piezoelectric polycrystals. J Appl Phys, 1992, 71: 4455–4464

    Article  ADS  Google Scholar 

  17. Bisegna P, Luciano R. Variational bounds for the overall properties of piezoelectric composites. J Mech Phys Solids, 1996, 44: 583–602

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Bisegna P, Luciano R. On methods for bounding the overall properties of periodic piezoelectric fibrous composites. J Mech Phys Solids, 1997, 45: 1329–1356

    Article  MathSciNet  ADS  Google Scholar 

  19. Hori M, Nemat-Nasser S. Universal bounds for effective piezoelectric moduli. Mech Mater, 1998, 30: 1–19

    Article  Google Scholar 

  20. Li J Y, Dunn M L. Variational bounds for the effective moduli of heterogeneous piezoelectric solids. Phil Mag A, 2001, 81(4): 903–926

    Article  ADS  Google Scholar 

  21. Rodriguez-Ramos R, Pobedria B E, Padilla P, et al. Variational principles for nonlinear piezoelectric materials. Arch Appl Mech, 2004, 74: 191–200

    MATH  Google Scholar 

  22. Tang T, Yu W. Variational asymptotic micromechanics modeling of heterogeneous piezoelectric materials. Mech Mater, 2008, 40: 812–824

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongPing Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Y., Xie, L. & Zhong, Z. Variational bounds of the effective moduli of piezoelectric composites. Sci. China Phys. Mech. Astron. 55, 2106–2113 (2012). https://doi.org/10.1007/s11433-012-4706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4706-9

Keywords

Navigation