Skip to main content
Log in

Public-key encryption and authentication of quantum information

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Public-key cryptosystems for quantum messages are considered from two aspects: public-key encryption and public-key authentication. Firstly, we propose a general construction of quantum public-key encryption scheme, and then construct an information-theoretic secure instance. Then, we propose a quantum public-key authentication scheme, which can protect the integrity of quantum messages. This scheme can both encrypt and authenticate quantum messages. It is information-theoretic secure with regard to encryption, and the success probability of tampering decreases exponentially with the security parameter with regard to authentication. Compared with classical public-key cryptosystems, one private-key in our schemes corresponds to an exponential number of public-keys, and every quantum public-key used by the sender is an unknown quantum state to the sender.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boykin P, Roychowdhury V. Optimal encryption of quantum bits. Phys Rev A, 2003, 67(4): 42317–42322; arXiv: quant-ph/0003059

    Article  ADS  Google Scholar 

  2. Boykin P. Information security and quantum mechanics: Security of quantum protocols. Dissertation for the Doctoral Degree. Los Angeles: University of California, 2002

    Google Scholar 

  3. Ambainis A, Mosca M, Tapp A, et al. Private quantum channels. In: proceeding of the 41st Annual Symposium on Foundations of Computer Science (FOCS’2000), 2000. 547–553

  4. Hayden P, Leung D, Shor P, et al. Randomizing quantum states: Constructions and applications. Commun Math Phys, 2004, 250(2): 371–391

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Ambainis A, Smith A. Small pseudo-random families of matrices: Derandomizing approximate quantum encryption. In: Proc. 8th Intern. Workshop on Randomization and Comput., Cambridge, MA. Berlin: Springer-Verlag, 2004. LNCS 3122: 249–260

    Google Scholar 

  6. Leung DW. Quantum Vernam cipher. Quantum Inf Comput, 2001, 2(1): 14–34

    MATH  Google Scholar 

  7. Zhou N R, Zeng G H. A realizable quantum encryption algorithm for qubits. Chin Phys, 2005, 14(11): 2164–2169

    Article  MathSciNet  ADS  Google Scholar 

  8. Zhou N R, Liu Y, Zeng G H, et al. Novel qubit block encryption algorithm with hybrid keys. Physica A, 2006, 375(2): 693–698

    Article  ADS  Google Scholar 

  9. Yang L. Quantum public-key cryptosystem based on classical NPcomplete problem. arXiv: quant-ph/0310076

  10. Kawachi A, Portmann C. On the power of quantum encryption keys. Lecture Notes Comput Sci, 2008, LNCS 5299: 165–180

  11. Barnum H, Crepeau C, Gottesman D, et al. Authentication of quantum messages. In: Proceeding 43rd Annual IEEE Symposium on the Foundations of Computer Science (FOCS’2002). New York: IEEE Press, 2002. 449–458

    Chapter  Google Scholar 

  12. Yang L, Hu L, Feng D G. Quantum message authentication based on classical NP-complete problem. arXiv: quant-ph/0310078

  13. Yang L, Liang M, Li B, et al. Quantum public-key cryptosystems based on induced trapdoor one-way transformations. arXiv:1012.5249

  14. Zhang X L. One-way quantum identity authentication based on public key. Chin Sci Bull, 2009, 54(12): 2018–2021

    Article  Google Scholar 

  15. Nielsen M, Chuang I. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  16. Goldreich O. Foudations of Cryptography: Basic Applications. Cambridge: Cambridge University Press, 2004

    Google Scholar 

  17. Yang L, Xiang C, Li B. Qubit-string-based bit commitment protocols with physical security. arXiv:1011.5099

  18. Hayashi M, Kawachi A, Kobayashi H. Quantum measurements for hidden subgroup problems with optimal sample complexity. Quantum Inf Comput, 2008, 8: 0345

    MathSciNet  Google Scholar 

  19. Kawachi A, Koshiba T, Nishimura H, et al. Computational indistinguishability between quantum states and its cryptographic application. Eurocrypt, 2005, LNCS 3994: 268–284

    Google Scholar 

  20. Pan J Y, Yang L. Quantum public-key encryption with information theoretic security. arXiv:1006.0354

  21. Yang L, Yang B Y, Pan J Y. Quantum public-key encryption scheme based on conjugate coding. arXiv: 1112.0421

  22. Long G L, Liu X S. Theoretically efficient high-capacity quantum-keydistribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  23. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68(4): 042317

    Article  ADS  Google Scholar 

  24. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69(5): 052319

    Article  ADS  Google Scholar 

  25. Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73(2): 022338

    Article  ADS  Google Scholar 

  26. Gu B, Pei S X, Song B, et al. Deterministic secure quantum communication over a collective-noise channel. Sci China Ser G-Phys Mech Astron, 2009, 52: 1913–1918

    Article  ADS  Google Scholar 

  27. Qin S J, Wen Q Y, Meng L M, et al. Quantum secure direct communication over the collective amplitude damping channel. Sci China Ser G-Phys Mech Astron, 2009, 52: 1208–1212

    Article  ADS  Google Scholar 

  28. Gao F, Wen Q Y, Qin S J, et al. Quantum asymmetric cryptography with symmetric keys. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1925–1931

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, M., Yang, L. Public-key encryption and authentication of quantum information. Sci. China Phys. Mech. Astron. 55, 1618–1629 (2012). https://doi.org/10.1007/s11433-011-4806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4806-y

Keywords

Navigation