Skip to main content
Log in

Multiparty simultaneous quantum identity authentication with secret sharing

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Two multiparty simultaneous quantum identity authentication (MSQIA) protocols based on secret sharing are presented. All the users can be authenticated by a trusted third party (TTP) simultaneously. In the first protocol, the TTP shares a random key K with all the users using quantum secret sharing. The ith share acts as the authentication key of the ith user. When it is necessary to perform MSQIA, the TTP generates a random number R secretly and sends a sequence of single photons encoded with K and R to all the users. According to his share, each user performs the corresponding unitary operations on the single photon sequence sequentially. At last, the TTP can judge whether the impersonator exists. The second protocol is a modified version with a circular structure. The two protocols can be efficiently used for MSQIA in a network. They are feasible with current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE, 1984. 175–179

    Google Scholar 

  2. Ekert A. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–664

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311-1–4

    ADS  Google Scholar 

  5. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315-1–5

    ADS  Google Scholar 

  6. Wang J, Zhang Q, Tang C J. Quantum secure direct communication based on order rearrangement of single photons. Phys Lett A, 2006, 358: 256–258

    Article  ADS  Google Scholar 

  7. Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354–1359

    MathSciNet  Google Scholar 

  8. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317-1–4

    ADS  Google Scholar 

  9. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319-1–4

    Article  ADS  Google Scholar 

  10. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601–603

    Article  ADS  Google Scholar 

  11. Zhu A D, Yia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338-1–4

    ADS  Google Scholar 

  12. Cao H J, Song H S. Quantum secure direct communication with W state. Chin Phys Lett, 2006, 23: 290–292

    Article  ADS  Google Scholar 

  13. Li X H, Zhou P, Liang Y J, et al. Quantum secure direct communication network with two-step protocol. Chin Phys Lett, 2006, 23: 1080–1083

    Article  ADS  Google Scholar 

  14. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305-1–4

    ADS  Google Scholar 

  15. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  ADS  MathSciNet  Google Scholar 

  16. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  17. Deng F G, Zhou H Y, Long G L. Circular quantum secret sharing. J Phys A: Math Gen, 2006, 39: 14089–14099

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

  19. Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys Lett A, 2005, 337: 329–334

    Article  ADS  Google Scholar 

  20. Guo G P, Guo G C. Quantum secret sharing without entanglement. Phys Lett A, 2003, 310: 247–251

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys Rev A, 2005, 72: 022303-1–4

    ADS  MathSciNet  Google Scholar 

  22. Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 044301-1–4

    ADS  MathSciNet  Google Scholar 

  23. Deng F G, Li X H, Li C Y, et al. Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys Rev A, 2005, 72: 044301-1–4

    ADS  Google Scholar 

  24. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338-1–8

    ADS  Google Scholar 

  25. Yan F L, Gao T. Quantum secret sharing between multiparty and multiparty without entanglement. Phys Rev A, 2005, 72: 012304-1–5

    Article  ADS  Google Scholar 

  26. Dušek M, Haderka O, Hendrych M, et al. Quantum identification system. Phys Rev A, 1999, 60: 149–156

    Article  ADS  Google Scholar 

  27. Curty M, Santos D J. Quantum authentication of classical messages. Phys Rev A, 2001, 64: 062309-1–6

    Article  ADS  Google Scholar 

  28. Mihara T. Quantum identification schemes with entanglements. Phys Rev A, 2002, 65: 05236-1–4

    Article  Google Scholar 

  29. Zeng G H, Zhang W P. Identity verification in quantum key distribution. Phys Rev A, 2001, 61: 022303-1–5

    ADS  Google Scholar 

  30. Ljunggren D, Bourennane M, Karlsson A. Authority-based user authentication in quantum key distribution. Phys Rev A, 2000, 62: 022305-1–7

    Article  ADS  Google Scholar 

  31. Zhou N R, Zeng G H, Zeng W J, et al. Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt Commun, 2005, 254: 380–388

    Article  ADS  Google Scholar 

  32. Wang J, Zhang Q, Tang C J. Multiparty simultaneous quantum identity authentication based on entanglement swapping. arXiv: quant-ph/0605006

  33. Bouwmeester D, Pan J W, Daniell M, et al. Observation of three-photon greenberger-horne-zeilinger entanglement. Phys Rev Lett, 1999, 82: 1345–1349

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 2001, 86: 4435-1–4

    Article  ADS  Google Scholar 

  35. Gottesman D. Theory of quantum secret sharing. Phys Rev A, 2000, 61: 042311-1–8

    Article  ADS  MathSciNet  Google Scholar 

  36. Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

    Article  ADS  Google Scholar 

  37. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302-1–3

    ADS  Google Scholar 

  38. Qin S J, Gao F, Wen Q Y, et al. Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys Lett A, 2006, 357: 101–103

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuGuang Yang.

Additional information

Supported by the National Basic Research Program of China (973 Program) (Grant No. 2007CB311100), the National High Technology Research and Development Program of China (Grant Nos. 2006AA01Z419 and 20060101Z4015), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90604023), the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM200810005004), the Scientific Research Foundation for the Youth of Beijing University of Technology (Grant No. 97007016200701), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20040013007), the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601), and the Doctor Scientific Research Activation Foundation of Beijing University of Technology (Grant No. 52007016200702)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Wen, Q. & Zhang, X. Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Ser. G-Phys. Mech. As 51, 321–327 (2008). https://doi.org/10.1007/s11433-008-0034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0034-5

Keywords