Skip to main content
Log in

Plasmon-induced transparency in terahertz metamaterials

  • Special Focus
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The quantum phenomena of electromagnetically induced transparency (EIT) or plasmonic analogue of electromagnetically induced transparency (PIT) can be mimicked in the classical resonators, leading to a unique way to explore the coherent coupling mechanism in metamaterial systems. Various metamaterial structures have been proposed to excite and manipulate the PIT effect with flexibility and performance with geometry-controllable, polarization-independent, broadband-transparency and active-modulated characteristics. These in turn promise the fascinating functionalities and applications of the PIT effects, such as slow-light components, nonlinear devices and high-sensitivity sensors. Here, we present a review on the progress in developing the PIT effect in terahertz metamaterials over the past few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris S E. Electromagnetically induced transparency. Phys Today, 1997, 50: 36–42

    Article  Google Scholar 

  2. Boiler K J, Imamoglu A, Harris S E. Observation of electromagnetically induced transparency. Phys Rev Lett, 1991, 66: 2593–2596

    Article  Google Scholar 

  3. Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys, 2005, 77: 633–673

    Article  Google Scholar 

  4. Krauss T F. Why do we need slow light. Nat Photonics, 2008, 2: 448–450

    Article  Google Scholar 

  5. Monat C, Sterke M D, Eggleton B J. Slow light enhanced nonlinear optics in periodic structures. J Opt, 2010, 12: 104003

    Article  Google Scholar 

  6. Boyd R W. Material slow light and structural slow light: similarities and differences for nonlinear optics. J Opt Soc Am B-Opt Phys, 2011, 28: 38–43

    Article  Google Scholar 

  7. Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor. Phys Rev Lett, 2001, 86: 783–786

    Article  Google Scholar 

  8. Luk’yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater, 2010, 9: 707–715

    Article  Google Scholar 

  9. Yang X, Yu M, Kwong D, et al. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys Rev Lett, 2009, 102: 173902

    Article  Google Scholar 

  10. Xu Q, Sandhu S, Povinelli M L, et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett, 2006, 96: 123901

    Article  Google Scholar 

  11. Alzar C L G, Martinez M A G, Nussenzveig P. Classical analog of electromagnetically induced transparency. Am J Phys, 2002, 70: 37–41

    Article  Google Scholar 

  12. Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials. Phys Rev Lett, 2008, 101: 047401

    Article  Google Scholar 

  13. Papasimakis N, Fedotov V A, Zheludev N I. Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett, 2008, 101: 253903

    Article  Google Scholar 

  14. Tassin P, Zhang L, Koschny T, et al. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett, 2009, 102: 053901

    Article  Google Scholar 

  15. Singh R, Rockstuhl C, Lederer F, et al. Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys Rev B, 2009, 79: 085111

    Article  Google Scholar 

  16. Chiam S Y, Singh R, Rockstuhl C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys Rev B, 2009, 80: 153103

    Article  Google Scholar 

  17. Cao W, Singh R, Al-Naib I A I, et al. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt Lett, 2012, 37: 3366–3368

    Article  Google Scholar 

  18. Singh R, Al-Naib I A I, Koch M, et al. Asymmetric planar terahertz metamaterials. Opt Express, 2010, 18: 13044–13050

    Article  Google Scholar 

  19. Kekatpure R D, Barnard E S, Cai W, et al. Phase-coupled plasmon-induced transparency. Phys Rev Lett, 2010, 104: 243902

    Article  Google Scholar 

  20. Singh R, Al-Naib I A I, Koch M, et al. Sharp Fano resonances in THz metamaterials. Opt Express, 2011, 19, 6312–6319

    Article  Google Scholar 

  21. Wu C, Khanikaev A B, Shvets G. Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys Rev Lett, 2011, 106: 107403

    Article  Google Scholar 

  22. Gu J, Singh R, Azad A K, et al. An active hybrid plasmonic metamaterial. Opt Mater Express, 2012, 2: 31–37

    Article  Google Scholar 

  23. Li Z, Ma Y, Huang R, et al. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express, 2011, 19: 8912–8919

    Article  Google Scholar 

  24. Ma Y, Li Z, Yang Y, et al. Plasmon-induced transparency in twisted Fano terahertz metamaterial. Opt Mater Express, 2011, 1: 391–399

    Article  Google Scholar 

  25. Liu X, Gu J, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl Phys Lett, 2012, 100: 131101

    Article  Google Scholar 

  26. Zhang X, Li Q, Cao W, et al. Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial. IEEE J, 2013, 19: 8400707

    Article  Google Scholar 

  27. Zhu Z, Yang X, Gu J, et al. Broadband plasmon induced transparency in terahertz metamaterials. Nanotechnology, 2013, 24: 214003

    Article  Google Scholar 

  28. Gu J, Singh R, Liu X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun, 2012, 3: 1151

    Article  Google Scholar 

  29. Zhang L, Tassin P, Koschny T, et al. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl Phys Lett, 2010, 97: 241904

    Article  Google Scholar 

  30. Zhang J, Xiao S, Jeppesen C, et al. Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt Express, 2010, 18: 17187–17192

    Article  Google Scholar 

  31. Singh R, Al-Naib I A I, Yang Y, et al. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl Phys Lett, 2011, 99: 201107

    Article  Google Scholar 

  32. Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electro-magnetically induced transparency at the Drude damping limit. Nat Mater, 2009, 8: 758–762

    Article  Google Scholar 

  33. Wang J, Wang S, Singh R, et al. Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation. Chin Opt Lett, 2013, 11: 011602

    Article  Google Scholar 

  34. Cao W, Song C, Lanier T E, et al. Tailoring terahertz plasmons with silver nanorod arrays. Sci Rep, 2013, 3: 1766

    Google Scholar 

  35. Chowdhury D R, Singh R, Taylor A J, et al. Coupling Schemes in Terahertz Planar Metamaterials. Int J Opt, 2012, 2012: 148985

    Google Scholar 

  36. Singh R, Lu X, Gu J, et al. Random terahertz metamaterials. J Opt, 2010, 12: 015101

    Article  Google Scholar 

  37. Al-Naib I, Singh R, Shalaby M, et al. Enhanced Q-factor in optimally coupled macrocell THz metamaterials: effect of spatial arrangement. IEEE J Sel Top Quant, 2013, 19: 8400807

    Article  Google Scholar 

  38. Zhou Y, Jiang Q, Cui T. Three-dimensional subwavelength components utilizing THz surface plasmons. Sci China Inf Sci, 2012, 55: 79–89

    Article  Google Scholar 

  39. Rao L, Yang D. Surface electromagnetic modes contribution to the anomalous terahertz transmission through doublelayered metal hole array. Sci China Inf Sci, 2012, 55: 90–97

    Article  Google Scholar 

  40. Singh R, Azad A K, O’Hara J F, et al. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt Lett, 2008, 33: 1506–1508

    Article  Google Scholar 

  41. Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt Lett, 2006, 31: 634–636

    Article  Google Scholar 

  42. Grischkowsky D, Keiding S, Exter M V, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B-Opt Phys, 1990, 7: 2006–2015

    Article  Google Scholar 

  43. Zhang W. Resonant terahertz transmission in plasmonic arrays of subwavelength holes. Eur Phys J Appl Phys, 2008, 4: 31

    MATH  Google Scholar 

  44. Tian Z, Azad A K, Lu X, et al. Large dynamic resonance transition between surface plasmon and localized surface plasmon modes. Opt Express, 2010, 18: 12482–12488

    Article  Google Scholar 

  45. Singh R, Rockstuhl C, Zhang W. Strong influence of packing density in terahertz metamaterials. Appl Phys Lett, 2010, 9: 241108

    Article  Google Scholar 

  46. Singh R, Rockstuhl C, Lederer F, et al. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials. Appl Phys Lett, 2009, 94: 021116

    Article  Google Scholar 

  47. Lu X, Han J, Zhang W. Localized plasmonic properties of subwavelength geometries resonating at terahertz frequencies. IEEE J Sel Top Quantum Electron, 2011, 17: 119–129

    Article  Google Scholar 

  48. Corrigan T D, Kolb P W, Sushkov A B, et al. Optical plasmonic resonances in split-ring resonator structures: an improved LC model. Opt Express, 2008, 16: 19850–19864

    Article  Google Scholar 

  49. Chowdhury D R, Singh R, Reiten M, et al. Tailored resonator coupling for modifying the terahertz metamaterial response. Opt Express, 2011, 19: 10679–10685

    Article  Google Scholar 

  50. Al-Naib I A I, Jansen C, Born N, et al. Polarization and angle independent terahertz metamaterials with high Q-factors. Appl Phys Lett, 2011, 98: 091107

    Article  Google Scholar 

  51. Singh R, Plum E, Menzel C, et al. Terahertz metamaterial with asymmetric transmission. Phys Rev B, 2009, 80: 153104

    Article  Google Scholar 

  52. Wang B, Zhou J, Koschny T, et al. Chiral metamaterials: simulations and experiments. J Opt A: Pure Appl Opt, 2009, 11: 114003

    Article  Google Scholar 

  53. Singh R, Plum E, Zhang W, et al. Highly tunable optical activity in planar achiral terahertz metamaterials. Opt Express, 2010, 18: 13425–13430

    Article  Google Scholar 

  54. Chen H T, O’Hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photon, 2008, 2: 295–298

    Article  Google Scholar 

  55. Chen H T, Padilla W J, Zide J M O, et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt Lett, 2007, 32: 1620–1623

    Article  Google Scholar 

  56. Lapine M, Powell D, Gorkunov M, et al. Structural tunability in metamaterials. Appl Phys Lett, 2009, 95: 084105

    Article  Google Scholar 

  57. Padilla W J, Taylor A J, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett, 2006, 96: 107401

    Article  Google Scholar 

  58. Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator. Nat Photon, 2009, 3: 148–151

    Article  Google Scholar 

  59. Kleine-Ostmann T, Dawson P, Pierz K, et al. Room-temperature operation of an electrically driven terahertz modulator. Appl Phys Lett, 2004, 84: 3555–3557

    Article  Google Scholar 

  60. Dong Z G, Liu H, Cao J X, et al. Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett, 2010, 97: 114101

    Article  Google Scholar 

  61. Lu Y, Rhee J Y, Jang W H, et al. Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Opt Express, 2010, 18: 20912–20917

    Article  Google Scholar 

  62. Chowdhury D R, Singh R, O’Hara J F, et al. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Appl Phys Lett, 2011, 99: 231101

    Article  Google Scholar 

  63. Chowdhury D R, Singh R, Taylor A J, et al. Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial. Appl Phys Lett, 2013, 102: 011122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JiaGuang Han or WeiLi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, H., Zhu, Z., Zhang, X. et al. Plasmon-induced transparency in terahertz metamaterials. Sci. China Inf. Sci. 56, 1–18 (2013). https://doi.org/10.1007/s11432-013-5035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5035-y

Keywords

Navigation