Skip to main content
Log in

Real-time and visible monitoring of stress distribution using organic mechanoresponsive luminogen

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A real-time and visible stress monitoring method based on a pure organic mechanoresponsive luminogen (MRL) was proposed in this work. 1,1,2,2-tetrakis(4-nitrophenyl)ethene (TPE-4N) could produce ultrasensitive and visible mechanoresponsive fluorescence. Metal specimens were coated with a uniform TPE-4N film, wherein mechanical deformation was transformed into visible fluorescence. Tensile tests were conducted to determine the calibration relationship between the stress value and fluorescence intensity. The accuracy of stress measured using the organic MRL method was investigated on single-edge notched tension specimens. Results show that the stress distribution obtained using the proposed method agrees well with that calculated using ANSYS simulation. The organic MRL method may open up new opportunities for large-scale, full-field, on-site monitoring of stress distribution in complicated structural components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li C, Xu C N, Zhang L, et al. Dynamic visualization of stress distribution on metal by mechanoluminescence images. J Vis, 2008, 11: 329–335

    Article  Google Scholar 

  2. Hild F, Roux S. Digital image correlation: From displacement measurement to identification of elastic properties—A review. Strain. 2006, 42: 69–80

    Article  Google Scholar 

  3. Xu C N, Watanabe T, Akiyama M, et al. Direct view of stress distribution in solid by mechanoluminescence. Appl Phys Lett, 1999, 74: 2414–2416

    Article  Google Scholar 

  4. Petzing J N, Tyrer J R. Recent developments and applications in electronic speckle pattern interferometry. J Strain Anal Eng Des, 1998, 33: 153–169

    Article  Google Scholar 

  5. Sakagami T, Yamaguchi N, Kubo S, et al. A new full-field motion compensation technique for infrared stress measurement using digital image correlation. J Strain Anal Eng Des, 2008, 43: 539–549

    Article  Google Scholar 

  6. Ramesh K, Ramakrishnan V. Digital photoelasticity of glass: A comprehensive review. Optics Lasers Eng, 2016, 87: 59–74

    Article  Google Scholar 

  7. Fernández M S B. Metrological study for the optimal selection of the photoelastic model in transmission photoelasticity. Appl Opt, 2011, 50: 5721

    Article  Google Scholar 

  8. Kim J S. Application of mechanoluminescence for the dynamic visualization of an alumina fracture. J Inf Display, 2010, 11: 33–38

    Article  Google Scholar 

  9. Chu T C, Ranson W F, Sutton M A. Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech, 1985, 25: 232–244

    Article  Google Scholar 

  10. Pan B, Qian K, Xie H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas Sci Technol, 2009, 20: 062001

    Article  Google Scholar 

  11. Chen J L, Zhang X C, Zhan N. Extended digital image correlation method for micro-region deformation measurement. Sci China Tech Sci, 2011, 54: 1355–1361

    Article  MATH  Google Scholar 

  12. Hu Z X, Xu T G, Wang X M, et al. Fluorescent digital image correlation techniques in experimental mechanics. Sci China Tech Sci, 2018, 61: 21–36

    Article  Google Scholar 

  13. Mei J, Leung N L C, Kwok R T K, et al. Aggregation-induced emission: Together we shine, united we soar! Chem Rev, 2015, 115: 11718–11940

    Article  Google Scholar 

  14. Liu M, Wu Q, Shi H, et al. Progress of research on organic/organometallic mechanoluminescent materials. Acta Chim Sin, 2018, 76: 246

    Article  Google Scholar 

  15. Xu C N, Watanabe T, Akiyama M, et al. Artificial skin to sense mechanical stress by visible light emission. Appl Phys Lett, 1999, 74: 1236–1238

    Article  Google Scholar 

  16. Pucci A. Mechanochromic fluorescent polymers with aggregation-induced emission features. Sensors, 2019, 19: 4969

    Article  Google Scholar 

  17. Di B H, Chen Y L. Recent progress in organic mechanoluminescent materials. Chin Chem Lett, 2018, 29: 245–251

    Article  Google Scholar 

  18. Yuan Y, Yuan W, Chen Y. Recent advances in mechanoluminescent polymers. Sci China Mater, 2016, 59: 507–520

    Article  Google Scholar 

  19. Guan W, Zhong J, Yang T, et al. Applications of visualization analysis in fluorescence sensing of film-based materials (in Chinese). Sci Sin-Chim, 2020, 50: 30–38

    Article  Google Scholar 

  20. Zhao F, Li G, Ji X, et al. Mechano-optical response of micellar hydrogel films. Appl Surf Sci, 2021, 539: 148228

    Article  Google Scholar 

  21. Ducrot E, Chen Y, Bulters M, et al. Toughening elastomers with sacrificial bonds and watching them break. Science, 2014, 344: 186–189

    Article  Google Scholar 

  22. Chen Y, Sijbesma R P. Dioxetanes as mechanoluminescent probes in thermoplastic elastomers. Macromolecules, 2014, 47: 3797–3805

    Article  Google Scholar 

  23. Zhou Y, Hua J, Tang B Z, et al. AIEgens in cell-based multiplex fluorescence imaging. Sci China Chem, 2019, 62: 1312–1332

    Article  Google Scholar 

  24. Yu Y, Hong Y N, Feng C, et al. Synthesis of an AIE-active fluorogen and its application in cell imaging. Sci China Ser B-Chem, 2009, 52: 15–19

    Article  Google Scholar 

  25. Liang J, Feng G, Kwok R T K, et al. AIEgen based light-up probes for live cell imaging. Sci China Chem, 2016, 59: 53–61

    Article  Google Scholar 

  26. Yang Y, Zheng S, Fu X, et al. Remote and portable mechanoluminescence sensing system based on a SrAl2O4:Eu,Dy film and its potential application to monitoring the safety of gas pipelines. Optik, 2018, 158: 602–609

    Article  Google Scholar 

  27. Fujio Y, Xu C N, Terasawa Y, et al. Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel. Int J Hydrogen Energy, 2016, 41: 1333–1340

    Article  Google Scholar 

  28. Terasaki N, Fujio Y, Horiuchi S, et al. Mechanoluminescent studies of failure line on double cantilever beam (DCB) and tapered-DCB (TDCB) test with similar and dissimilar material joints. Int J Adhes Adhes, 2019, 93: 102328

    Article  Google Scholar 

  29. Krishnan S, Van der Walt H, Venkatesh V, et al. Dynamic characterization of elastico-mechanoluminescence towards structural health monitoring. J Intell Mater Syst Struct, 2017, 28: 2458–2464

    Article  Google Scholar 

  30. Fujio Y, Xu C N, Sakata Y, et al. Invisible crack visualization and depth analysis by mechanoluminescence film. J Alloys Compd, 2020, 832: 154900

    Article  Google Scholar 

  31. Zhang J C, Wang X, Marriott G, et al. Trap-controlled mechanoluminescent materials. Prog Mater Sci, 2019, 103: 678–742

    Article  Google Scholar 

  32. Sohn K S, Seo S Y, Kwon Y N, et al. Direct observation of crack tip stress field using the mechanoluminescence of SrAl2P4:(Eu,Dy,Nd). J Am Ceramic Soc, 2002, 85: 712–714

    Article  Google Scholar 

  33. Kim J S, Kwon Y N, Sohn K S. Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd). Acta Mater, 2003, 51: 6437–6442

    Article  Google Scholar 

  34. Yao Z, Yin S, Luan W, et al. A novel way of real-time crack monitoring based on quantum dots. Energy Procedia, 2017, 105: 5061–5066

    Article  Google Scholar 

  35. Yin S, Zhao Z, Luan W, et al. Optical response of a quantum dotepoxy resin composite: Effect of tensile strain. RSC Adv, 2016, 6: 18126–18133

    Article  Google Scholar 

  36. Zhao Z, Luan W, Yin S, et al. Metal crack propagation monitoring by photoluminescence enhancement of quantum dots. Appl Opt, 2015, 54: 6498–6501

    Article  Google Scholar 

  37. Qiu Z, Zhao W, Cao M, et al. Dynamic visualization of stress/strain distribution and fatigue crack propagation by an organic mechanoresponsive AIE luminogen. Adv Mater, 2018, 30: 1803924

    Article  Google Scholar 

  38. Zhang Z, Cao M, Zhang L, et al. Dynamic visible monitoring of heterogeneous local strain response through an organic mechanoresponsive AIE luminogen. ACS Appl Mater Interfaces, 2020, 12: 22129–22136

    Article  Google Scholar 

  39. Zhao W, He Z, Peng Q, et al. Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. Nat Commun, 2018, 9: 3044

    Article  Google Scholar 

  40. Qiu Z, Chu E K K, Jiang M, et al. A simple and sensitive method for an important physical parameter: Reliable measurement of glass transition temperature by AIEgens. Macromolecules, 2017, 50: 7620–7627

    Article  Google Scholar 

  41. Ford K B, Collins M K, Ajami N E, et al. Optical response to low applied pressure in a quantum dot nanocomposite. Mater Lett, 2013, 106: 301–303

    Article  Google Scholar 

  42. Kim J S, Kwon Y N, Shin N, et al. Visualization of fractures in alumina ceramics by mechanoluminescence. Acta Mater, 2005, 53: 4337–4343

    Article  Google Scholar 

  43. Wang W X, Imai Y, Xu C N, et al. A new smart damage sensor using mechanoluminescence material. Mater Sci Forum, 2011, 675–677: 1081–1084

    Article  Google Scholar 

  44. Chandra V K, Chandra B P. Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals. J Lumin, 2012, 132: 858–869

    Article  Google Scholar 

  45. Jia Y, Yei M, Jia W. Stress-induced mechanoluminescence in SrAl2O4: Eu2+,Dy3+. Optical Mater, 2006, 28: 974–979

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Zhang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFC0808600) and the National Natural Science Foundation of China (Grant Nos. 52075368, 51605325, and 11772219).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, Z., Lin, H. et al. Real-time and visible monitoring of stress distribution using organic mechanoresponsive luminogen. Sci. China Technol. Sci. 64, 2586–2594 (2021). https://doi.org/10.1007/s11431-020-1862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1862-x

Keywords

Navigation