Skip to main content
Log in

On ferroelectric domain polarization switching mechanism subject to an external electric field by simulations with the phase-field method

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The ferroelectric domain formation (FDF) and polarization switching (FDPS) subjected to an external electric field are simulated using the phase-field (PF) method, and the FDPS mechanism under different external electric fields is discussed. The results show that the FDF is a process of nucleation and growth in ferroelectric without applying any external stress. Four kinds of parallelogram shaped ferroelectric domains are formed at the steady state, in which the 180° anti-phase domains regularly align along the −45° direction and the 90° anti-phase domains regularly distribute like a stepladder. Steady electric fields can rotate domain polarization by 90° and 180°, and force the orientation-favorite domains and the average polarization to grow into larger ones. The greater the steady electric field, the larger the average polarization at the steady state. In ferroelectrics subject to an alternating electric field, domain polarization switches to cause a hysteresis loop and an associated butterfly loop with the alternating electric field. The coercive field and remnant field are enhanced with the increase of the electric field frequency or strength, or with the decrease of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He Y S, Fan J H. A simplified model for domain switching of ferroelectric crystal. Chin J Solid Mech, 2004, 25(4): 371–376

    Google Scholar 

  2. Wang J, Shi S Q, Chen L Q, et al. Phase field simulations of ferroelectric/ ferroelastic polarization switching. Acta Mater, 2004, 52(3): 749–764

    Article  Google Scholar 

  3. Chen L Q. Phase field models for microstructure evolution. Annu Rev Mater Res, 2002, 32(1): 113–135

    Article  Google Scholar 

  4. Nambu S, Sagala D A. Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys Rev B, 1994, 50(9): 5838–5847

    Article  Google Scholar 

  5. Hu H L, Chen L Q. Computer simulation of 90° ferroelectric domain formation in two-dimensions. Mater Sci Eng A, 1997, 238(1): 182–191

    Article  Google Scholar 

  6. Hu H L, Chen L Q. Three-dimensional computer simulation of ferroelectric domain formation. J Am Ceram Soc, 1998, 81(3): 492–500

    Article  Google Scholar 

  7. Wang J, Li Y L, Chen L Q, et al. The effect of mechanical strains on the ferroelectric and dielectric properties of a model single crystal-Phase field simulation. Acta Mater, 2005, 53(8): 2495–2507

    Article  Google Scholar 

  8. Roy K M, Sarkar S, Dattagupta S. Evolution of 180°, 90° and vortex domains in ferroelectric films. Appl Phys Let, 2009, 95(19): 192905

    Article  Google Scholar 

  9. Zhong W L. Ferroelectric Physics. Beijing: Science Press, 1996

    Google Scholar 

  10. Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations. Compu Phys Commun, 1998, 108(2–3): 147–158

    Article  MATH  Google Scholar 

  11. Zhu J Z, Chen L Q, Shen J, et al. Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method. Phys Rev E, 1999, 60(4): 3564–3572

    Article  Google Scholar 

  12. Haun M J, Furman E, Jang S J, et al. Thermodynamic theory of PbTiO3. J Appl Phys, 1987, 62(8): 3331–3338

    Article  Google Scholar 

  13. Stolichnov I, Tagantsev A, Colla E, et al. Kinetics of polarization reversal in ferroelectric films: Role of domain nucleation and domain wall motion. Ceram Int, 2004, 30(7): 1095–1099

    Article  Google Scholar 

  14. Kim J D, Jo J Y, Kim H T, et al. Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr, Ti)O3 capacitors. Appl Phys Lett, 2007, 91(13): 132903

    Article  Google Scholar 

  15. Zhang L Y, Yao X. Dielectric Physics. Xi’an: Xi’an Jiao Tong University Press, 1991

    Google Scholar 

  16. Wang H, Zhu J, Zhang X W, et al. Domain structure of adaptive orthorhombic phase in [110]-poled Pb(Mg1/3Nb2/3)O3-30.5%PbTiO3 single crystal. Appl Phys Lett, 2008, 92(13): 132906

    Article  Google Scholar 

  17. Iwata M, Katsuraya K, Aoyagi R, et al. Domain wall observations and the phase transition in Pb(Zn1/3Nb2/3)O3-8%PbTiO3 by AFM. Ferroelectrics, 2007, 347(1): 157–161

    Article  Google Scholar 

  18. Burnett T L, Comyn T P, Merson E, et al. Electron backscatter diffraction as a domain analysis technique in BiFeO3-PbTiO3 single crystals. IEEE T Ultrason Ferr, 2008, 55(5): 957–962

    Article  Google Scholar 

  19. Yao P, Zhang C L, Xue T, et al. The observation on the electric polarized inversion structure of ferroelectric domain in LiNbO3 crystals with ESEM. Mod Instrum, 2004, 10(5): 23–25

    Google Scholar 

  20. Yang S M, Jo J Y, Kim H T, et al. Ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops. Phys Rev B, 2010, 82(17): 174125

    Article  Google Scholar 

  21. Zheng X J, Lu J, Zhou Y C, et al. Evolution of domain structure and frequency effect on ferroelectric properties in BIT ferroelectrics. Trans Nonferrous Met Soc, 2007, 17(A01): s64–s68

    Google Scholar 

  22. Suryanarayana P, Bhattacharya K. Evolution of polarization and space charges in semiconducting ferroelectrics. J Appl Phys, 2012, 111(3): 034109

    Article  Google Scholar 

  23. So Y W, Kim D J, Noh T W, et al. Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Appl Phys Lett, 2005, 86(9): 092905

    Article  Google Scholar 

  24. Ong L H, Musleh A. Tilley-Zeks Model in switching phenomena of ferroelectric films. Ferroelectrics, 2009, 380(1): 150–159

    Article  Google Scholar 

  25. Lohse O, Grossmann M, Boettger U, et al. Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films. J Appl Phys, 2001, 89(4): 2332–2336

    Article  Google Scholar 

  26. Picinin A, Lente M H, Eiras J A, et al. Theoretical and experimental investigations of polarization switching in ferroelectrics materials. Phys Rev B, 2004, 69(6): 064117

    Article  Google Scholar 

  27. Wu J, Li W F, Huang W B. Micromechanics analysis of the influence of temperature on the process of ferroelectric polarization reversal. Chin J Solid Mech, 2009, 30(4): 341–345

    Google Scholar 

  28. Yuan G L, Liu J M, Baba-Kishi K, et al. Switching fatigue of ferroelectric layered-perovskite thin films: Temperature effect. Mat Sci Eng B-Solid, 2005, 118(1–3): 225–228

    Article  Google Scholar 

  29. Tura V, Ricinschi D, Mitoseriu L, et al. Simulation of switching properties of ferroelectrics on the basis dipole lattice model. Jpn J Appl Phys, 1997, 36(4A): 2183–2191

    Article  Google Scholar 

  30. Tokumitsu E, Tanisake N, Ishiwara H. Partial switching kinetics of ferroelectric PbZrxTi1−x O3 thin films prepared by sol-gel technique. Jpn J Appl Phys, 1994, 33(9B): 5201–5206

    Article  Google Scholar 

  31. Omura M, Adachi H, Ishibashi Y. Simulations of ferroelectric characteristics using a one-dimensional lattice model. Jpn J Appl Phys, 1991, 30(9B): 2384–2387

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangZhao Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, G., Wang, Y., Liu, C. et al. On ferroelectric domain polarization switching mechanism subject to an external electric field by simulations with the phase-field method. Sci. China Technol. Sci. 56, 1129–1138 (2013). https://doi.org/10.1007/s11431-013-5135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5135-3

Keywords

Navigation