Skip to main content
Log in

Synthesis, field emission and microwave absorption of carbon nanotubes filled with ferromagnetic nanowires

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Carbon nanotubes filled with ferromagnetic metal nanowires (M-CNTs) were synthesized by using chlorine-contained benzene (e.g. trichlorobenzene) as precursor. The wall thicknesses of M-CNTs synthesized by trichlorobenzene are much thinner than those by precursor without Cl (e.g. benzene). As-synthesized thin-walled M-CNTs exhibit remarkably enhanced field electron emission performance with a low turn-on field of 0.3 V/μm and better field-emission stability. Microwave-absorption coatings were made by dispersing as-synthesized M-CNTs into epoxy resin matrix. It is found that the reflection losses in S-band (2–4 GHz), C-band (4–8 GHz) and X-band (8–12 GHz) are enhanced in the order of FeCoNi-CNTs < FeNi-CNTs< FeCo-CNTs. The areal density of as-prepared coatings is only 2.35 kg/m2 when the coating thickness is 2.0 mm. This demonstrates that M-CNTs are promising to be used as lightweight and wide-band microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terrones H, Lopez-Urias F, Munoz-Sandoval E, et al. Magnetism in Fe-based and carbon nanostructures: Theory and applications. Solid State Sci, 2006, 8: 303–320

    Article  Google Scholar 

  2. Lo R T, Kang F Y, Wei J Q, et al. Electromagnetic property of alpha-Fe filled carbon nanotubes (in Chinese). J Inorg Mater, 2008, 23: 23–28

    Article  Google Scholar 

  3. Lin H Y, Zhu H, Guo H F, et al. Microwave-absorbing properties of Co-filled carbon nanotubes. Mater Res Bull, 2008, 43: 2697–2702

    Article  Google Scholar 

  4. Che R C, Peng L M, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater, 2004, 16: 401–405

    Article  Google Scholar 

  5. Monch I, Meye A, Leonhardt A, et al. Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells. J Magn Magn Mater, 2005, 290: 276–278

    Article  Google Scholar 

  6. Wolny F, Weissker U, Muhl T, et al. Iron-filled carbon nanotubes as probes for magnetic force microscopy. J Appl Phys, 2008, 104: 064908

    Article  Google Scholar 

  7. Winkler A, Muhl T, Menzel S, et al. Magnetic force microscopy sensors using iron-filled carbon nanotubes. J Appl Phys, 2006, 99: 104905

    Article  Google Scholar 

  8. Lv R T, Kang F Y, Wang W X, et al. Soft magnetic performance improvement of Fe-filled carbon nanotubes by water-assisted pyrolysis route. Phys Status Solidi A-Appl Mat, 2007, 204: 867–873

    Article  Google Scholar 

  9. Bao J C, Tie C, Xu Z, et al. A facile method for creating an array of metal-filled carbon nanotubes. Adv Mater, 2002, 14: 1483–1486

    Article  Google Scholar 

  10. Grobert N, Mayne M, Terrones M, et al. Alloy nanowires: Invar inside carbon nanotubes. Chem Commun, 2001, 5: 471–472

    Article  Google Scholar 

  11. Cao A Y, Zhang X F, Wei J Q, et al. Macroscopic three-dimensional arrays of Fe nanoparticles supported in aligned carbon nanotubes. J Phys Chem B, 2001, 105: 11937–11940

    Article  Google Scholar 

  12. Sano N, Naito M, Kikuchi T. Enhanced field emission properties of films consisting of Fe-core carbon nanotubes prepared under magnetic field. Carbon, 2007, 45: 78–82

    Article  Google Scholar 

  13. Hampel S, Leonhardt A, Selbmann D, et al. Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon, 2006, 44: 2316–2322

    Article  Google Scholar 

  14. Lee Y H, Kim D H, Kim D H, et al. Magnetic catalyst residues and their influence on the field electron emission characteristics of low temperature grown carbon nanotubes. Appl Phys Lett, 2006, 89: 083113

    Article  Google Scholar 

  15. Zhou G, Duan W H, Gu B L. Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes. Phys Rev Lett, 2001, 8709: 095504

    Article  Google Scholar 

  16. Wang M S, Peng L M, Wang J Y, et al. Quantitative analysis of electron field-emission characteristics of individual carbon nanotubes: The importance of the tip structure. J Phys Chem B, 2006, 110: 9397–9402

    Article  Google Scholar 

  17. Lv R T, Cao A Y, Kang F Y, et al. Single-crystalline permalloy nanowires in carbon nanotubes: Enhanced encapsulation and magnetization. J Phys Chem C, 2007, 111: 11475–11479

    Article  Google Scholar 

  18. Lv R T, Kang F Y, Wang W X, et al. Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes. Carbon, 2007, 45: 1433–1438

    Article  Google Scholar 

  19. Lv R T, Tsuge S, Gui X C, et al. In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper. Carbon, 2009, 47: 1141–1145

    Article  Google Scholar 

  20. Lv R T, Kang F Y, Zhu D, et al. Enhanced field emission of openended, thin-walled carbon nanotubes filled with ferromagnetic nanowires. Carbon, 2009, 47: 2709–2715

    Article  Google Scholar 

  21. Lv R T, Kang F Y, Gu J L, et al. Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber. Appl Phys Lett, 2008, 93: 223105

    Article  Google Scholar 

  22. Zhang X F, Cao A Y, Wei B Q, et al. Rapid growth of well-aligned carbon nanotube arrays. Chem Phys Lett, 2002, 362: 285–290

    Article  Google Scholar 

  23. Lv R, Zou L, Gui X, et al. High-yield bamboo-shaped carbon nanotubes from cresol for electrochemical application. Chem Commun, 2008, 17: 2046–2048

    Article  Google Scholar 

  24. Lv R T, Kang F Y, Cai D Y, et al. Long continuous FeNi nanowires inside carbon nanotubes: Synthesis, property and application, presented at 14th International Symposium on Intercalation Compounds (ISIC 14), Seoul, Jun 12–15, 2007

  25. Park S, Srivastava D, Cho K. Generalized chemical reactivity of curved surfaces: Carbon nanotubes. Nano Lett, 2003, 3: 1273–1277

    Article  Google Scholar 

  26. Yang H X, Ling Z, Yan X R. Inorganic Chemistry. Beijing: Higher Education Press, 2002

    Google Scholar 

  27. Gao F, Xie S Y, Huang R B, et al. Significant promotional effect of CCl4 on fullerene yield in the graphite arc-discharge reaction. Chem Commun, 2003, 21: 2676–2677

    Article  Google Scholar 

  28. De Jonge N, Doytcheva M, Allioux M, et al. Cap closing of thin carbon nanotubes. Adv Mater, 2005, 17: 451–455

    Article  Google Scholar 

  29. Mu G H, Chen N, Pan X F, et al. Microwave absorption properties of hollow microsphere/titania/M-type Ba ferrite nanocomposites. Appl Phys Lett, 2007, 91: 043110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FeiYu Kang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 50632040, 50902080) and China Postdoctoral Science Foundation (Grant No. 20090450021).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, R., Kang, F., Gu, J. et al. Synthesis, field emission and microwave absorption of carbon nanotubes filled with ferromagnetic nanowires. Sci. China Technol. Sci. 53, 1453–1459 (2010). https://doi.org/10.1007/s11431-010-3145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-3145-y

Keywords

Navigation