Skip to main content
Log in

Evaluation of the applicability of multiple drought indices in the core zone of “westerlies-dominated climatic regime”

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Drought indices are frequently used to measure the intensity, start and end of droughts. However, the performances of these indices depend on regions and the type of droughts. Therefore, it is necessary to evaluate whether these indices are applicable for a given region. This study evaluated the ability of the self-calibrating Palmer Drought Severity Index (scPDSI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Standardized Moisture Anomaly Index (SZI) to describe the dry-wet conditions and drought events in the core zone of the “westerlies-dominated climatic regime”. The results showed that the 12-month SZI (SZI12) and SPEI (SPEI12) have good correlations with precipitation and PET respectively, while the scPDSI can capture the changes in precipitation and soil moisture. In Xinjiang region of China, the SZI12 and scPDSI showed that this region gradually became wetter during 1961–2014, which was consistent with increased precipitation, decreased PET, and improved vegetation. However, the SPEI12 showed significant drying due to the strong influence of the PET, suggesting that this index exaggerated the drought conditions in this region. Precipitation in Kazakhstan and the southern Central Asian regions has increased slightly over the past 50 years, but the PET has greatly increased, altogether, all three indices suggested a drying trend in Central Asia. The evaluation of the ability of these drought indices to identify typical drought events in Xinjiang region of China suggested that the scPDSI can better detect the typical drought events compared with the SZI12. In conclusion, the scPDSI is the most suitable index for characterizing the long-term trend of hydroclimate conditions and drought events in the core zone of the “westerlies-dominated climatic regime”. This study provides a theoretical basis for the rational utilization and improvement of the drought index, which is critical for monitoring, attributing, and predicting of drought events in arid areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen R G, Pereira L S, Raes D, Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Rome, 300: D05109

    Google Scholar 

  • Alley W M. 1984. The Palmer Drought Severity Index: Limitations and assumptions. J Clim Appl Meteorol, 23: 1100–1109

    Article  Google Scholar 

  • Ayantobo O O, Wei J H. 2019. Appraising regional multi-category and multi-scalar drought monitoring using standardized moisture anomaly index (SZI): A water-energy balance approach. J Hydrol, 579: 124139

    Article  Google Scholar 

  • Buitenwerf R, Sandel B, Normand S, Mimet A, Svenning J C. 2018. Land surface greening suggests vigorous woody regrowth throughout European semi-natural vegetation. Glob Change Biol, 24: 5789–5801

    Article  Google Scholar 

  • Cai G Q, Chen S J, Liu Y, Sun H W, Chen C Q, Gui D W, Yan D. 2020. Using multiple indexes to analyze temporal and spatial patterns of precipitation and drought in Xinjiang, China. Theor Appl Climatol, 142: 177–190

    Article  Google Scholar 

  • Chen F H, Chen J, Huang W, Chen S, Huang X, Jin L, Jia J, Zhang X, An C, Zhang J, Zhao Y, Yu Z, Zhang R, Liu J, Zhou A, Feng S. 2019. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci Rev, 192: 337–354

    Article  Google Scholar 

  • Chen F H, Huang W, Jin L Y, Chen J H, Wang J S. 2011. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci China Earth Sci, 54: 1812–1821

    Article  Google Scholar 

  • Chen Z Q, Zeng Y, Shen G Y, Xiao C J, Xu L, Chen N C. 2021. Spatiotemporal characteristics and estimates of extreme precipitation in the Yangtze River Basin using GLDAS data. Int J Climatol, 41: 1812–1830

    Article  Google Scholar 

  • Cook B I, Bonan G B, Levis S. 2006. Soil moisture feedbacks to precipitation in southern Africa. J Clim, 19: 4198–4206

    Article  Google Scholar 

  • Cook B I, Smerdon J E, Seager R, Coats S. 2014. Global warming and 21st century drying. Clim Dyn, 43: 2607–2627

    Article  Google Scholar 

  • Dai A G. 2011. Drought under global warming: a review. WIREs Clim Change, 2: 45–65

    Article  Google Scholar 

  • Dai A G. 2013. Increasing drought under global warming in observations and models. Nat Clim Change, 3: 52–58

    Article  Google Scholar 

  • Dai A G, Trenberth K E, Qian T. 2004. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J Hydrometeorol, 5: 1117–1130

    Article  Google Scholar 

  • Didan K. 2015. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC

  • D’Odorico P, Porporato A. 2004. Preferential states in soil moisture and climate dynamics. Proc Natl Acad Sci USA, 101: 8848–8851

    Article  Google Scholar 

  • Feng S, Fu Q. 2013. Expansion of global drylands under a warming climate. Atmos Chem Phys, 13: 10081–10094

    Article  Google Scholar 

  • Feng S, Hu Q, Huang W, Ho C H, Li R, Tang Z. 2014. Projected climate regime shift under future global warming from multi-model, multiscenario CMIP5 simulations. Glob Planet Change, 112: 41–52

    Article  Google Scholar 

  • Feng S, Trnka M, Hayes M, Zhang Y. 2017. Why do different drought indices show distinct future drought risk outcomes in the U.S. Great Plains? J Clim, 30: 265–278

    Google Scholar 

  • Fensholt R, Proud S R. 2012. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ, 119: 131–147

    Article  Google Scholar 

  • Greve P, Orlowsky B, Mueller B, Sheffield J, Reichstein M, Seneviratne S I. 2014. Global assessment of trends in wetting and drying over land. Nat Geosci, 7: 716–721

    Article  Google Scholar 

  • Guillod B P, Orlowsky B, Miralles D G, Teuling A J, Seneviratne S I. 2015. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat Commun, 6: 1–6

    Article  Google Scholar 

  • Guttman N B. 1998. Comparing the palmer drought index and the standardized precipitation index. J Am Water Resources Assoc, 34: 113–121

    Article  Google Scholar 

  • Guttman N B, Wallis J R, Hosking J R M. 1992. Spatial comparability of the Palmer Drought Severity Index. J Am Water Resources Assoc, 28: 1111–1119

    Article  Google Scholar 

  • Hao Z C, Singh V P, Xia Y. 2018. Seasonal drought prediction: advances, challenges, and future prospects. Rev Geophys, 56: 108–141

    Article  Google Scholar 

  • Harris I C, Jones P D, Osborn T. 2021. CRU TS4.05: Climatic Research Unit (CRU) Time-Series (TS) version 4.05 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2020). NERC EDS Centre for Environmental Data Analysis, 25

  • Heddinghaus T R, Sabol P. 1991. A review of the Palmer Drought Severity Index and where do we go from here. Boston: Proceedings 7th Conference on Applied Climatology. 242–246

  • Hu Z Y, Zhou Q M, Chen X, Li J F, Li Q X, Chen D L, Liu W B, Yin G. 2018. Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. Int J Climatol, 38: 3475–3493

    Article  Google Scholar 

  • Huang S Z, Wang L, Wang H, Huang Q, Leng G Y, Fang W, Zhang Y. 2019. Spatio-temporal characteristics of drought structure across China using an integrated drought index. Agric Water Manage, 218: 182–192

    Article  Google Scholar 

  • Huang W, Chen F H, Feng S, Chen J H, Zhang X J. 2013. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin Sci Bull, 58: 3962–3968

    Article  Google Scholar 

  • Huang W, Chen J H, Zhang X J, Feng S, Chen F H. 2015. Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period. Sci China Earth Sci, 58: 676–684

    Article  Google Scholar 

  • Ji L, Peters A J. 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens Environ, 87: 85–98

    Article  Google Scholar 

  • Karl T R. 1986. The sensitivity of the Palmer Drought Severity Index and Palmer’s Z-index to their calibration coefficients including potential evapotranspiration. J Clim Appl Meteorol, 25: 77–86

    Article  Google Scholar 

  • Li L, She D X, Zheng H, Lin P R, Yang Z L. 2020. Elucidating diverse drought characteristics from two meteorological drought indices (SPI and SPEI) in China. J Hydrometeorol, 21: 1513–1530

    Article  Google Scholar 

  • Li X M, Jiang F Q, Li L H, Wang G G. 2011. Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. Int J Climatol, 31: 1679–1693

    Google Scholar 

  • Liu X Y, Xin L G. 2021. China’s deserts greening and response to climate variability and human activities. PloS One, 16: e0256462

    Article  Google Scholar 

  • Liu Y, Ren L L, Hong Y, Zhu Y, Yang X L, Yuan F, Jiang S H. 2016. Sensitivity analysis of standardization procedures in drought indices to varied input data selections. J Hydrol, 538: 817–830

    Article  Google Scholar 

  • Lu J Y, Yan J P, Li Y J. 2018. The temporal variation characteristics of drought in Yunnan-Guizhou area during 1960 to 2014 based on SPEI and run-length theory (in Chinese). J Zhejiang Univ Sci, 45: 363–372

    Google Scholar 

  • Martens B, Miralles D G, Lievens H, van der Schalie R, de Jeu R A M, Fernández-Prieto D, Beck H E, Dorigo W A, Verhoest N E C. 2017. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci Model Dev, 10: 1903–1925

    Article  Google Scholar 

  • McKee T B, Doesken N J, Kleist J. 1993. The relationship of drought frequency and duration to time scales. Boston: Proceedings of the 8th Conference on Applied Climatology. 179–183

  • McKee T B, Doesken N J, Kleist J. 1995. Drought monitoring with multiple time scales. Boston: Proceedings of the 9th Conference on Applied Climatology. 233–236

  • Meira Neto A A, Niu G Y, Roy T, Tyler S, Troch P A. 2020. Interactions between snow cover and evaporation lead to higher sensitivity of streamflow to temperature. Commun Earth Environ, 1: 56

    Article  Google Scholar 

  • Milly P C D, Dunne K A. 2016. Potential evapotranspiration and continental drying. Nat Clim Change, 6: 946–949

    Article  Google Scholar 

  • Miralles D G, van den Berg M J, Gash J H, Parinussa R M, de Jeu R A M, Beck H E, Holmes T R H, Jiménez C, Verhoest N E C, Dorigo W A, Teuling A J, Johannes Dolman A. 2014. El Niño-La Niña cycle and recent trends in continental evaporation. Nat Clim Change, 4: 122–126

    Article  Google Scholar 

  • Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts R A, Carrao H, Spinoni J, Vogt J, Feyen L. 2018. Global changes in drought conditions under different levels of warming. Geophys Res Lett, 45: 3285–3296

    Article  Google Scholar 

  • Opacka B, Müller J F, Stavrakou T, Miralles D G, Koppa A, Pagán B R, Potosnak M J, Seco R, De Smedt I, Guenther A B. 2022. Impact of drought on isoprene fluxes assessed using field data, satellite-based GLEAM soil moisture and HCHO observations from OMI. Remote Sens, 14: 2021

    Article  Google Scholar 

  • Palmer W C. 1965. Meteorological Drought Research Paper 45. Washington D C: US Weather Bureau

    Google Scholar 

  • Ranasinghe R, Ruane A C, Vautard R, Arnell N, Coppola E, Cruz F A, Zaaboul R. 2021. Climate change information for regional impact and for risk assessment. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, et al., eds. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • Reus M. 2022. Evaluation of global soil moisture products for local scale applications. Dissertation for Master’s Degree. Wageningen: Wageningen University and Research. 1–55

    Google Scholar 

  • Rodell M, Houser P R, Jambor U, Gottschalck J, Mitchell K, Meng C J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin J K, Walker J P, Lohmann D, Toll D. 2004. The global land data assimilation system. Bull Amer Meteorol Soc, 85: 381–394

    Article  Google Scholar 

  • Sandeep P, Obi Reddy G P, Jegankumar R, Arun Kumar K C. 2021. Monitoring of agricultural drought in semi-arid ecosystem of Peninsular India through indices derived from time-series CHIRPS and MODIS datasets. Ecol Indic, 121: 107033

    Article  Google Scholar 

  • Schmidt T, Schuster C, Kleinschmit B, Forster M. 2014. Evaluating an intra-annual time series for grassland classification-how many acquisitions and what seasonal origin are optimal? IEEE J Sel Top Appl Earth Observations Remote Sens, 7: 3428–3439

    Article  Google Scholar 

  • Seneviratne S I, Corti T, Davin E L, Hirschi M, Jaeger E B, Lehner I, Orlowsky B, Teuling A J. 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci Rev, 99: 125–161

    Article  Google Scholar 

  • Sheffield J, Wood E F. 2008. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J Clim, 21: 432–458

    Article  Google Scholar 

  • Song S K, Bai J. 2016. Increasing winter precipitation over arid central Asia under global warming. Atmosphere, 7: 139

    Article  Google Scholar 

  • Sousa P M, Trigo R M, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R. 2011. Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazards Earth Syst Sci, 11: 33–51

    Article  Google Scholar 

  • Tirivarombo S, Osupile D, Eliasson P. 2018. Drought monitoring and analysis: Standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Phys Chem Earth Parts A B C, 106: 1–10

    Article  Google Scholar 

  • Tucker C J, Pinzon J E, Brown M E, Slayback D A, Pak E W, Mahoney R, Vermote E F, El Saleous N. 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens, 26: 4485–4498

    Article  Google Scholar 

  • van der Schrier G, Briffa K R, Osborn T J, Cook E R. 2006. Summer moisture availability across North America. J Geophys Res-Atmos, 111: 11

    Article  Google Scholar 

  • van der Schrier G, Efthymiadis D, Briffa K R, Jones P D. 2007. European Alpine moisture variability for 1800–2003. Int J Climatol, 27: 415–427

    Article  Google Scholar 

  • Vicente-Serrano S M. 2007. Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Nat Hazards, 40: 173–208

    Article  Google Scholar 

  • Vicente-Serrano S M, Beguería S, López-Moreno J I. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim, 23: 1696–1718

    Article  Google Scholar 

  • Vicente-Serrano S M, Beguería S, Lorenzo-Lacruz J, Camarero J J, López-Moreno J I, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A. 2012. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16: 1–27

    Article  Google Scholar 

  • Vicente-Serrano S M, van der Schrier G, Beguería S, Azorin-Molina C, Lopez-Moreno J I. 2015. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J Hydrol, 526: 42–54

    Article  Google Scholar 

  • Wang S N, Li R P, Wu Y J, Zhao S X. 2022. Effects of multi-temporal scale drought on vegetation dynamics in Inner Mongolia from 1982 to 2015, China. Ecol Indic, 136: 108666

    Article  Google Scholar 

  • Wang Y F, Fu B J, Lü Y H, Chen L D. 2011. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semiarid Loess Plateau, China. Catena, 85: 58–66

    Article  Google Scholar 

  • Wei J, Ma Z G. 2003. Comparison of Palmer drought severity index, percentage of precipitation anomaly and surface humid index (in Chinese). Acta Geogr Sin, 58: 117–124

    Google Scholar 

  • Wells N, Goddard S, Hayes M J. 2004. A self-calibrating Palmer Drought Severity Index. J Clim, 17: 2335–2351

    Article  Google Scholar 

  • Wen K G, Shi Y G. 2006. Encyclopedia of Meteorological Disasters in China: Xinjiang (in Chinese). Bejing: China Meteorological Press

    Google Scholar 

  • Xie T T, Huang W, Chang S Q, Zheng F, Chen J H, Chen J, Chen F H. 2021. Moisture sources of extreme precipitation events in arid Central Asia and their relationship with atmospheric circulation. Int J Climatol, 41: E271–E282

    Article  Google Scholar 

  • Xie T T, Huang W, Feng S, Wang T, Liu Y, Chen J, Chen F H. 2022. Mechanism of winter precipitation variations in the southern arid Central Asia. Intl J Climatol, 42: 4477–4490

    Article  Google Scholar 

  • Yang Q, Li M X, Zheng Z Y, Ma Z G. 2017. Regional applicability of seven meteorological drought indices in China. Sci China Earth Sci, 60: 745–760

    Article  Google Scholar 

  • Yang Y T, Zhang S L, Roderick M L, McVicar T R, Yang D W, Liu W B, Li X Y. 2020. Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs. Hydrol Earth Syst Sci, 24: 2921–2930

    Article  Google Scholar 

  • Yao J Q, Tuoliewubieke D, Chen J, Huo W, Hu W F. 2019. Identification of drought events and correlations with large-scale ocean-atmospheric patterns of variability: a case study in Xinjiang, China. Atmosphere, 10: 94

    Article  Google Scholar 

  • Yao J Q, Zhao Y, Chen Y N, Yu X J, Zhang R B. 2018. Multi-scale assessments of droughts: A case study in Xinjiang, China. Sci Total Environ, 630: 444–452

    Article  Google Scholar 

  • Yu Z X, Wang T Y, Wang P, Yu J J. 2022. The Spatiotemporal Response of Vegetation Changes to Precipitation and Soil Moisture in Drylands in the North Temperate Mid-Latitudes. Remote Sens, 14: 3511

    Article  Google Scholar 

  • Zhai J Q, Su B D, Krysanova V, Vetter T, Gao C, Jiang T. 2010. Spatial variation and trends in PDSI and SPI indicesand their relation to streamflow in 10 large regions of China. J Clim, 23: 649–663

    Article  Google Scholar 

  • Zhang B Q, AghaKouchak A, Yang Y T, Wei J H, Wang G Q. 2019. A water-energy balance approach for multi-category drought assessment across globally diverse hydrological basins. Agric For Meteorol, 264: 247–265

    Article  Google Scholar 

  • Zhang B Q, Zhao X N, Jin J M, Wu P T. 2015. Development and evaluation of a physically based multiscalar drought index: The Standardized Moisture Anomaly Index. J Geophys Res-Atmos, 120: 11,575–11,588

    Article  Google Scholar 

  • Zhang C C, Yang Y T, Yang D W, Wu X C. 2021. Multidimensional assessment of global dryland changes under future warming in climate projections. J Hydrol, 592: 125618

    Article  Google Scholar 

  • Zhao R T, Liu X C, Dong J W, Zhao G, Manevski K, Andersen M N, Tang Q. 2022. Human activities modulate greening patterns: a case study for southern Xinjiang in China based on long time series analysis. Environ Res Lett, 17: 044012

    Article  Google Scholar 

  • Zheng J Y, Bian J J, Ge Q S, Hao Z X. 2013. The climate regionalization in China for 1981–2010 (in Chinese). Chin Sci Bull, 58: 3088–3099

    Article  Google Scholar 

  • Zhong Z Q, He B, Guo L L, Zhang Y F. 2019. Performance of various forms of the Palmer Drought Severity Index in China from 1961 to 2013. J Hydrometeorol, 20: 1867–1885

    Article  Google Scholar 

  • Zhuang S W, Zuo H C, Ren P C, Xiong G J, Li B D, Dong W C, Wang L Y. 2013. Application of standardized precipitation evapotranspiration index in China (in Chinese). Clim Environ Res, 18: 617–625

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Baoqing ZHANG and Ph.D. student Biao LONG for providing the codes to calculate the SZI. This work was supported by the National Key R&D Program of China (Grant No. 2018YFA0606404) and the National Natural Science Foundation of China (Grant No. 41877446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Huang, W., Xie, T. et al. Evaluation of the applicability of multiple drought indices in the core zone of “westerlies-dominated climatic regime”. Sci. China Earth Sci. 66, 1504–1520 (2023). https://doi.org/10.1007/s11430-022-1097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1097-0

Keywords

Navigation