Skip to main content
Log in

Receiver function imaging of dense seismic array and deep dynamic mechanism beneath the eastern South China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Mesozoic tectonic framework of the eastern South China is mainly controlled by subduction, turning toward, and rollback of the Pacific Plate. Recent studies of receiver function imaging and ambient noise tomography have revealed the “Y-shaped” thinnest crustal belt in the eastern South China under the overall extension of the lithosphere. However, the deep dynamic environment and formation mechanisms of the thin crustal belt remain debatable. Here we obtained high-resolution images of the crustal thickness and Poisson’s ratio in the eastern South China Block applying the recently proposed H-κ-c receiver function method, using data recorded by 305 dense portable broadband stations and 219 permanent stations surrounding. Additionally, we discussed the deep dynamic formation mechanism of the “Y-shaped” thinnest crustal belt coupled with two common conversion point stacked images at key locations. Results show that the average crustal thickness of the study area is 33 km (thin crust) and the average Poisson’s ratio is 0.24 (low ratio). The overall crustal thinning toward the continental margin is likely because eastern South China was in a back-arc extension environment, which was induced by the rollback of the subducted plate in the Early Cretaceous. The crustal thickness of the “Y-shaped” thinnest crustal belt is <30 km, which is 3–5 km thinner than that outside the zone. The eastern branch is distributed along the trajectory of Nanchang-Ji’an-Ganzhou-Shaoguan-Guangzhou, and the western branch is around the Jianghan-Xiangzhong Basin, both of which intersect in Nanling. The eastern branch of the thin crustal zone indicates the potential location of the Pacific subduction slab breakoff, and the formation mechanism may be related to the interaction of deep-shallow processes, including the upwelling of mantle heat flow through the slab window and transtensional pre-existing faults. We developed a dynamic model that combines subduction-breakoff-rollback processes of the Paleo-Pacific Plate and accompanying deep fluid upwelling to explain the regional extension of the South China lithosphere, the formation mechanism of the thinnest crustal belt, and the distribution of granitic plutons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An M J, Shi Y L. 2006. Lithospheric thickness of the Chinese continent. Phys Earth Planet Inter, 159: 257–266

    Article  Google Scholar 

  • Cawood P A, Zhao G C, Yao J L, Wang W, Xu Y J, Wang Y J. 2018. Reconstructing South China in Phanerozoic and Precambrian super-continents. Earth-Sci Rev, 186: 173–194

    Article  Google Scholar 

  • Charvet J. 2013. The Neoproterozoic-early Paleozoic tectonic evolution of the South China Block: An overview. J Asian Earth Sci, 74: 198–209

    Article  Google Scholar 

  • Chen A G, Lü Q T, Du J G, Yan J Y. 2019. The Poisson’s ratio of the crust-mantle of South China and its geological significance (in Chinese). Geol China, 46: 750–758

    Google Scholar 

  • Chen C X, Lü Q T, Chen L, Shi D N, Yan J Y, Ai Y S. 2022. Crustal thickness and composition in the South China Block: Constraints from earthquake receiver function. Sci China Earth Sci, 65: 698–713

    Article  Google Scholar 

  • Chen H, Li H X, Hong D Q, Han R B, Wang X T, Deng J Z, Li G, Gong M, Huang G N, Sheng S Z. 2022. Crustal tectonic evolution of Tanlu fault zone (southern segment) and adjacent areas under the background of extension:Evidences from teleseismic receiver function (in Chinese). Earth-Sci, 1–12

  • Chen J Q, Pan L, Li Z B, Chen X F. 2022. Continental reworking in the Eastern South China Block and its adjacent areas revealed by F-J multimodal ambient noise tomography. J Geophys Res-Solid Earth, 127: e2022JB024776

    Article  Google Scholar 

  • Chen L, Ai Y S. 2009. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J Geophys Res, 114: B06307

    Article  Google Scholar 

  • Chough S K, Sohn Y K. 2010. Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Sci Rev, 101: 225–249

    Article  Google Scholar 

  • Christensen N I. 1996. Poisson’s ratio and crustal seismology. J Geophys Res, 101: 3139–3156

    Article  Google Scholar 

  • Chu Y, Lin W, Faure M, Xue Z H, Ji W B, Feng Z T. 2019. Cretaceous episodic extension in the South China Block, East Asia: Evidence from the Yuechengling Massif of Central South China. Tectonics, 38: 3675–3702

    Article  Google Scholar 

  • Deng Y F, Levandowski W. 2018. Lithospheric alteration, intraplate crustal deformation, and topography in eastern China. Tectonics, 37: 4120–4134

    Article  Google Scholar 

  • Deng Y F, Li J T, Peng T P, Ma Q, Song X D, Sun X L, Shen Y S, Fan W M. 2019. Lithospheric structure in the Cathaysia block (South China) and its implication for the late Mesozoic magmatism. Phys Earth Planet Inter, 291: 24–34

    Article  Google Scholar 

  • Deng Y F, Li S L, Fan W M, Liu J. 2011. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications (in Chinese). Chin J Geophys, 54: 2560–2574

    Google Scholar 

  • Dong S W, Li J H, Cawood P A, Gao R, Zhang Y Q, Xin Y J. 2020. Mantle influx compensates crustal thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE reflection profiling. Earth Planet Sci Lett, 544: 116360

    Article  Google Scholar 

  • Dong S W, Zhang Y Q, Zhang F Q, Cui J J, Chen X H, Zhang S H, Miao L C, Li J H, Shi W, Li Z H, Huang S Q, Li H L. 2015. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution. J Asian Earth Sci, 114: 750–770

    Article  Google Scholar 

  • Gao R, Chen C, Wang H Y, Lu Z W, Brown L, Dong S W, Feng S Y, Li Q S, Li W H, Wen Z P, Li F. 2016. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan Basin. Earth Planet Sci Lett, 454: 86–91

    Article  Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Article  Google Scholar 

  • Gerya T V, Meilick F I. 2011. Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. J Metamorph Geol, 29: 7–31

    Article  Google Scholar 

  • Gerya T V, Perchuk L L, Burg J P. 2008. Transient hot channels: Perpetrating and regurgitating ultrahigh-pressure, high-temperature crustmantle associations in collision belts. Lithos, 103: 236–256

    Article  Google Scholar 

  • Gorczyk W, Guillot S, Gerya T V, Hattori K. 2007. Asthenospheric up-welling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from Greater Antilles. Geophys Res Lett, 34: L21309

    Article  Google Scholar 

  • Guo F, Fan W M, Li C W, Zhao L, Li H X, Yang J H. 2012. Multi-stage crust-mantle interaction in SE China: Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong-Fujian provinces. Lithos, 150: 62–84

    Article  Google Scholar 

  • Guo L H, Gao R, Shi L, Huang Z R, Ma Y W. 2019. Crustal thickness and Poisson’s ratios of South China revealed from joint inversion of receiver function and gravity data. Earth Planet Sci Lett, 510: 142–152

    Article  Google Scholar 

  • Guo L Z, Shi Y S, Ma R S. 1980. The geotectonic framework and crustal evolution of South China. In: Scientific Papers on Geology for International Exchange (1. Tectonic Geology and Geological Mechanics) (in Chinese). Beijing: Geological Publishing House. 109–116

    Google Scholar 

  • Hammond J O S. 2014. Constraining melt geometries beneath the Afar Depression, Ethiopia from teleseismic receiver functions: The anisotropic H-κ stacking technique. Geochem Geophys Geosyst, 15: 1316–1332

    Article  Google Scholar 

  • Han R B, Li Q S, Huang R, Zhang H S. 2020. Detailed structure of mantle transition zone beneath southeastern China and its implications for thinning of the continental lithosphere. Tectonophysics, 789: 228480

    Article  Google Scholar 

  • Han R B, Li Q S, Xu Y X, Zhang H S, Chen H, Lang C, Wu Q Y, Wang X. 2019. Deep structure background and Poisson’s ration beneath the intersection zone of Nanling and Wuyi (in Chinese). Chin J Geophys, 62: 2477–2489

    Google Scholar 

  • Han R B, Yang D H, Li Q S, Chen H, Zhang H S, Ye Z, Cheng Y Z, Fu W. 2022. Crustal structure and anisotropy in the Lower Yangtze region and its metallogenic implications. Front Earth Sci, 10: 849088

    Article  Google Scholar 

  • He C S, Dong S W, Santosh M, Chen X H. 2013. Seismic evidence for a geosuture between the Yangtze and Cathaysia Blocks, South China. Sci Rep, 3: 2200

    Article  Google Scholar 

  • He Z Y, Xu X S. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction. Chem Geol, 328: 208–221

    Article  Google Scholar 

  • Hou Q L, Liu Q, Lin W, Xu D R, He M, Wang Z L, Wei W, Guo Q Q. 2019. Mesozoic tectonic regime and evolution of eastern China: A mini-review based on the recent development. Solid Earth Sci, 4: 159–165

    Article  Google Scholar 

  • Hsü K J, Li J L, Chen H H, Wang Q C, Sun S, Şengör A M C. 1990. Tectonics of South China: Key to understanding West Pacific geology. Tectonophysics, 183: 9–39

    Article  Google Scholar 

  • Huang H B, Xiong H, Qiu X L, Li Y H. 2020. Crustal structure and magmatic evolution in the Pearl River Delta of the Cathaysia Block: New constraints from receiver function modeling. Tectonophysics, 778: 228365

    Article  Google Scholar 

  • Huang H Q, Li X H, Li W X, Li Z X. 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology, 39: 903–906

    Article  Google Scholar 

  • Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305

    Article  Google Scholar 

  • Huang R, Xu Y X, Zhu L P, He K. 2015. Detailed Moho geometry beneath southeastern China and its implications on thinning of continental crust. J Asian Earth Sci, 112: 42–48

    Article  Google Scholar 

  • Jahn B M, Zhou X H, Li J L. 1990. Formation and tectonic evolution of Southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics, 183: 145–160

    Article  Google Scholar 

  • Jahn B M. 1974. Mesozoic thermal events in Southeast China. Nature, 248: 480–483

    Article  Google Scholar 

  • Ji S C, Wang Q, Salisbury M H. 2009. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson’s ratio. Tectonophysics, 463: 15–30

    Article  Google Scholar 

  • Ji W B, Faure M, Lin W, Chen Y, Chu Y, Xue Z H. 2018. Multiple emplacement and exhumation history of the late Mesozoic Dayunshan-Mufushan Batholith in southeast China and its tectonic significance: Structural analysis and geochronological constraints. J Geophys Res-Solid Earth, 123: 711–731

    Article  Google Scholar 

  • Jiao W F, Wu Y B, Yang S H, Peng M, Wang J. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Sci China Ser D-Earth Sci, 52: 1393–1399

    Article  Google Scholar 

  • Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophys J Int, 105: 429–465

    Article  Google Scholar 

  • Li C, Yao H J, Yang Y, Luo S, Wang K D, Wan K S, Wen J, Liu B. 2020. 3D shear wave velocity structure in the shallow crust of the Tanlu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications. Earth Planet Phys, 4: 1–12

    Google Scholar 

  • Li H Y, Song X D, Lü Q T, Yang X Y, Deng Y F, Ouyang L B, Li J P, Li X F, Jiang G M. 2018. Seismic imaging of lithosphere structure and upper mantle deformation beneath East-Central China and their tectonic implications. J Geophys Res-Solid Earth, 123: 2856–2870

    Article  Google Scholar 

  • Li J H, Cawood P A, Ratschbacher L, Zhang Y Q, Dong S W, Xin Y J, Yang H, Zhang P X. 2020. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone. Earth-Sci Rev, 201: 103056

    Article  Google Scholar 

  • Li J H, Dong S W, Gao R, Peter A, CawoodZhang Y Q, Zhao G C, Li Q S, Xin Y J, Wang J M, Lü F. 2022. The thinnest crust in South China associated with the Cretaceous lithospheric extension evidence from SINOPROBE seismic reflection profiling. Tectonics, 41: e2022TC007240

    Article  Google Scholar 

  • Li J H, Shi W, Zhang Y Q, Dong S W, Ma Z L. 2016. Thermal evolution of the Hengshan extensional dome in central South China and its tectonic implications: New insights into low-angle detachment formation. Gondwana Res, 35: 425–441

    Article  Google Scholar 

  • Li J H, Zhang Y Q, Dong S W, Johnston S T. 2014. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Sci Rev, 134: 98–136

    Article  Google Scholar 

  • Li J H, Zhang Y Q, Dong S W, Su J B, Li Y, Cui J J, Shi W. 2013. The Hengshan low-angle normal fault zone: Structural and geochronological constraints on the Late Mesozoic crustal extension in South China. Tectonophysics, 606: 97–115

    Article  Google Scholar 

  • Li J T, Song X D, Wang P, Zhu L P. 2019. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions. J Geophys Res-Solid Earth, 124: 3782–3801

    Article  Google Scholar 

  • Li J T, Song X D. 2021. Crustal structure beneath the Hi-CLIMB seismic array in the central-western Tibetan Plateau from the improved H-κ-c method. Earthquake Sci, 34: 199–210

    Article  Google Scholar 

  • Li Q S, Gao R, Wu F T, Guan Y, Ye Z, Liu Q M, Chen H K, He R Z, Li W H, Shen X Z. 2013. Seismic structure in the southeastern China using teleseismic receiver functions. Tectonophysics, 606: 24–35

    Article  Google Scholar 

  • Li S Z, Suo Y H, Li X Y, Wang Y M, Cao X Z, Wang P C, Guo L L, Yu S Y, Lan H Y, Li S J, Zhao S J, Zhou Z Z, Zhang Z, Zhang G W. 2018. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone. Chin Sci Bull, 63: 1550–1593

    Article  Google Scholar 

  • Li S Z, Zang Y B, Wang P C, Suo Y H, Li X Y, Liu X, Zhou Z Z, Liu X G, Wang Q. 2017. Mesozoinc tectonic transition in South China and initiation of Palaeo-Pacific subduction (in Chinese). Earth Sci Front, 24: 213–225

    Google Scholar 

  • Li T D. 2010. Principal characteristics of the lithosphere of China (in Chinese). Earth Sci Front, 17: 1–13

    Google Scholar 

  • Li W, Chen Y, Xu Y G. 2021. Crustal SiO2 content of the Emeishan Large Igneous Province and its implications for magma volume and plumbing system. Geochem Geophys Geosyst, 22: e2021GC009783

    Article  Google Scholar 

  • Li X H. 2000. Cretaceous magmatism and lithospheric extension in southeast China. J Asian Earth Sci, 18: 293–305

    Article  Google Scholar 

  • Li X Q, Kind R, Yuan X H. 2003. Seismic study of upper mantle and transition zone beneath hotspots. Phys Earth Planet Inter, 136: 79–92

    Article  Google Scholar 

  • Li Y H, Gao M T, Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics, 611: 51–60

    Article  Google Scholar 

  • Li Y. 1995. Geochemical mass balances of major chemical constituents in the watershed of the Changhuajian River in China. Aquat Geochem, 1: 147–156

    Article  Google Scholar 

  • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179

    Article  Google Scholar 

  • Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am, 89: 1395–1400

    Article  Google Scholar 

  • Lin W, Faure M, Monié P, Schärer U, Zhang L, Sun Y. 2000. Tectonics of SE China: New insights from the Lushan massif (Jiangxi Province). Tectonics, 19: 852–871

    Article  Google Scholar 

  • Liu H, Chen F, Leng W, Zhang H, Xu Y. 2018. Crustal footprint of the Hainan plume beneath Southeast China. J Geophys Res-Solid Earth, 123: 3065–3079

    Article  Google Scholar 

  • Liu H, Niu F. 2012. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data. Geophys J Int, 188: 144–164

    Article  Google Scholar 

  • Liu L, Xu X S, Xia Y. 2016. Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Res, 37: 397–407

    Article  Google Scholar 

  • Liu M Q, Li Z H. 2018. Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling. Sci China Earth Sci, 61: 823–852

    Article  Google Scholar 

  • Liu M, Cui X J, Liu F T. 2004. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo-Asian collision? Tectonophysics, 393: 29–42

    Article  Google Scholar 

  • Liu Q Y, Rainer K, Li S C. 1997. The receiver functions at the stations of the Chinese Digital Seismic Network (CDSN) and their nonlinear inversion (in Chinese). Chin J Geophys, 40: 356–368

    Google Scholar 

  • Lü J, Xie Z J, Zheng Y, Zha X H, Hu R, Zeng X F. 2016. Rayleigh wave phase velocities of South China block and its adjacent areas. Sci China Earth Sci, 59: 2165–2178

    Article  Google Scholar 

  • Lü Q T, Hou Z Q, Yang Z S, Shi D N. 2005. Underplating in the middle-lower Yangtze Valley and model of geodynamic evolution: Constraints from geophysical data. Sci China Ser D-Earth Sci, 48: 985–999

    Article  Google Scholar 

  • Luo S, Yao H J, Li Q S, Wang W T, Wan K S, Meng Y F, Liu B. 2019. High-resolution 3D crustal S-wave velocity structure of the Middle-Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting. Sci China Earth Sci, 62: 1361–1378

    Article  Google Scholar 

  • Ma J W, Huang J Q, Fu Y Y. 2022. Phase velocity tomography of Rayleigh and Love waves in the suture zone between the Yangtze and Cathaysia Blocks (in Chinese). Chin J Geophys, 65: 1255–1270

    Google Scholar 

  • Mao J R, Li Z L, Ye H M. 2014. Mesozoic tectono-magmatic activities in South China: Retrospect and prospect. Sci China Earth Sci, 57: 2853–2877

    Article  Google Scholar 

  • Mao J W, Zheng W, Xie G P, Lehmann B, Goldfarb R. 2021. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology, 49: 592–596

    Article  Google Scholar 

  • Meng L, Li Z X, Chen H, Li X H, Wang X C. 2012. Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model. Lithos, 132–133: 127–140

    Article  Google Scholar 

  • Mu D L, Li S Z, Suo Y H, Zhu J J, Li X Y, Wang G Z, Guo L L, Liu Y J, Liu B. 2019. Tectonic and Geodynamic Mechanism of Back-arc-rifting Derived Micro-blocks: Insights from Back-arc spreading in the West Pacific (in Chinese). Geotect Metal, 43: 665–677

    Google Scholar 

  • Nikolaeva K, Gerya T V, Connolly J A D. 2008. Numerical modelling of crustal growth in intraoceanic volcanic arcs. Phys Earth Planet Inter, 171: 336–356

    Article  Google Scholar 

  • Peng H W, Fan H R, Jiang P, Hu H L, Lan T G. 2021. Two-stage rollbacks of the paleo-Pacific plate beneath the Cathaysia block during Cretaceous: Insights from A-type granites and volcanic rocks. Gondwana Res, 97: 158–175

    Article  Google Scholar 

  • Qiu Y M, Gao S, McNaughton N J, Groves D I, Ling W. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28: 11–14

    Article  Google Scholar 

  • Ren J, Tamaki K, Li S, Zhang J. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344: 175–205

    Article  Google Scholar 

  • Ryberg T, Weber M. 2000. Receiver function arrays: A reflection seismic approach. Geophys J Int, 141: 1–11

    Article  Google Scholar 

  • Shahzad S M, Liu J X, Sun Y, Li C. 2021. Crustal structure and deformation in southeastern China revealed by receiver functions. J Asian Earth Sci, 221: 104937

    Article  Google Scholar 

  • Shan B, Zhou W L, Xiao Y. 2021. Lithospheric thermal and compositional structure of South China jointly inverted from multiple geophysical observations. Sci China Earth Sci, 64: 148–160

    Article  Google Scholar 

  • Shu L S. 2012. An analysis of principal features of tectonic evolution in South China Block (in Chinese). Geol Bul Chin, 31: 1035–1053

    Google Scholar 

  • Sun W D, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 262: 533–542

    Article  Google Scholar 

  • Sun W D, Yang X Y, Fan W M, Wu F Y. 2012. Mesozoic large scale magmatism and mineralization in South China: Preface. Lithos, 150: 1–5

    Article  Google Scholar 

  • Szwillus W, Afonso J C, Ebbing J, Mooney W D. 2019. Global crustal thickness and velocity structure from geostatistical analysis of seismic data. J Geophys Res-Solid Earth, 124: 1626–1652

    Article  Google Scholar 

  • Tan Y J, Duan Y H, Lin J Y, Li W, Wang G C, Li X M, Wang G F, Zou C Q, Zhao Y N, Zhou M. 2021. Crustal composition of the eastern South China Block based on the seismological study (in Chinese). Chin J Geophys, 64: 3150–3163

    Google Scholar 

  • Teng J W, Zhang Z J, Zhang X K, Wang C Y, Gao R, Yang B J, Qiao Y H, Deng Y F. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. Tectonophysics, 609: 202–216

    Article  Google Scholar 

  • Wang F Y, Ling M X, Ding X, Hu Y H, Zhou J B, Yang X Y, Liang H Y, Fan W M, Sun W. 2011. Mesozoic large magmatic events and mineralization in SE China: Oblique subduction of the Pacific plate. Int Geol Rev, 53: 704–726

    Article  Google Scholar 

  • Wang Y J, Fan W M, Cawood P A, Ji S C, Peng T P, Chen X Y. 2007a. Indosinian high-strain deformation for the Yunkaidashan tectonic belt, south China: Kinematics and 40Ar/39Ar geochronological constraints. Tectonics, 26: TC6008

    Article  Google Scholar 

  • Wang Y J, Fan W M, Sun M, Liang X Q, Zhang Y H, Peng T P. 2007b. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province. Lithos, 96: 475–502

    Article  Google Scholar 

  • Wei Z G, Chen L, Li Z W, Ling Y, Li J. 2016. Regional variation in Moho depth and Poisson’s ratio beneath eastern China and its tectonic implications. J Asian Earth Sci, 115: 308–320

    Article  Google Scholar 

  • Wu F Y, Ge W C, Sun D Y, Guo C L. 2003. Discussions on the Lithospheric thinning in eastern China (in Chinese). Earth Sci Front, 10: 51–60

    Google Scholar 

  • Wu L L, Mei L F, Paton D A, Guo P Y, Liu Y S, Luo J, Wang D L, Li M H, Zhang P, Wen H. 2018. Deciphering the origin of the Cenozoic intracontinental rifting and volcanism in eastern China using integrated evidence from the Jianghan Basin. Gondwana Res, 64: 67–83

    Article  Google Scholar 

  • Wu Q J, Zeng R S. 1998. The crustal structure of Qinghai-Xizang plateau inferred from broadband teleseismic waveform (in Chinese). Chin J Geophys, 41: 669–679

    Google Scholar 

  • Xi J J, Jiang G M, Zhang G B. 2021. Study on deep velocity structure along a broadband seismic profile below the middle part of the Cathaysia block (in Chinese). Acta Geol Sin, 95: 779–790

    Google Scholar 

  • Xia S H, Zhao D P, Sun J L, Huang H B. 2016. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Res, 36: 46–56

    Article  Google Scholar 

  • Xia Y, Xu X S, Niu Y L, Liu L. 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: The magmatism in various tectonic settings and continent-arc-continent collision. Precambrian Res, 309: 56–87

    Article  Google Scholar 

  • Xiong X S, Gao R, Li Q S, Lu Z W, Wang H Y, Li W H, Guan Y. 2009. The Moho depth of South China revealed by seismic probing (in Chinese). Acta Geosci Sin, 30: 774–786

    Google Scholar 

  • Xu T, Zhang Z J, Tian X B, Liu B F, Bai Z M, Lü Q T, Teng J W. 2014. Crustal Structure beneath the Middle-Lower Yangtze Metallogenic belt and its Surrounding Areas: Constraints from Active Source Seismic experiment along the Lixin to Yixing Profile in East China (in Chinese). Acta Petrol Sin, 30: 918–930

    Google Scholar 

  • Xu X B, Zhang Y Q, Jia D, Shu L S, Wang D D. 2009. Early Mesozoic geotectonic processes in South China (in Chinese). Geol China, 36: 573–593

    Google Scholar 

  • Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757

    Article  Google Scholar 

  • Yang X Y, Li Y H, Afonso J C, Yang Y J, Zhang A Q. 2021. Thermochemical state of the upper mantle beneath South China from multi-observable probabilistic inversion. J Geophys Res-Solid Earth, 126: e2020JB021114

    Article  Google Scholar 

  • Ye Z, Li Q S, Gao R, Zhang H S, He R Z, Wang H Y, Li W H. 2014. A thinned lithosphere beneath coastal area of southeastern China as evidenced by seismic receiver functions. Sci China Earth Sci, 57: 2835–2844

    Article  Google Scholar 

  • Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488: 293–325

    Article  Google Scholar 

  • Yu J H, O’Reilly S Y, Wang L, Griffin W L, Zhou M F, Zhang M, Shu L. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Res, 181: 97–114

    Article  Google Scholar 

  • Yu J H, Wei Z Y, Wang L J, Shu L S, Sun T. 2006. Cathaysia Block: A young Continent Composed of Ancient Materials. Geol J China Univ, (4): 440–447

    Google Scholar 

  • Yuan X H, Ni J, Kind R, Mechie J, Sandvol E. 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J Geophys Res, 102: 27,491–27,500

    Article  Google Scholar 

  • Zhang A M, Wang Y J, Fan W M, Zhang Y Z, Yang J. 2012. Earliest Neoproterozoic (ca. 1.0 Ga) arc-back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: Geochronological and geochemical evidence from the metabasite. Precambrian Res, 220–221: 217–233

    Article  Google Scholar 

  • Zhang B F, Bao X W, Xu Y X. 2020. Distinct orogenic processes in the south- and north- central tien shan from receiver functions. Geophys Res Lett, 47: e86941

    Google Scholar 

  • Zhang G W, Guo A L, Wang Y J, Li S Z, Dong Y P, Liu S F, He D F, Cheng S Y, Lu R K, Yao A P. 2013. Tectonics of South China Continent and its implications. Sci China Earth Sci, 56: 1804–1828

    Article  Google Scholar 

  • Zhang Y Q, Dong S, Li J, Cui J, Shi W, Su J, Li Y. 2012. The New Progress in the Study of Mesozoic Tectonics of South China (in Chinese). Acta Geol Sin, 33: 257–279

    Google Scholar 

  • Zhang Y Q, Shi D N, Lü Q T, Xu Y, Xu Z W, Yan J Y, Chen C X, Xu T. 2021. The crustal thickness and composition in the eastern South China Block constrained by receiver functions: Implications for the geological setting and metallogenesis. Ore Geol Rev, 130: 103988

    Article  Google Scholar 

  • Zhang Y Q, Xu Y, Yan J Y, Xu Z W, Zhao J H. 2019. Crustal thickness, and its relations to mineralization in the southeastern part of South China: Constraint from the teleseismic receiver functions (in Chinese). Geol China, 46: 723–736

    Google Scholar 

  • Zhang Y Y, Chen L, Ai Y S, Jiang M M, Xu W W, Shen Z Y. 2018. Lithospheric structure of the South China Block from S-receiver function (in Chinese). Chin J Geophys, 61: 138–149

    Google Scholar 

  • Zhao G C. 2015. Jiangnan Orogen in South China: Developing from divergent double subduction. Gondwana Res, 27: 1173–1180

    Article  Google Scholar 

  • Zhao K F, Luo Y H, Yang Y J, Yang X Z. 2021. High-resolution lithospheric structures of the Qinling-Dabie orogenic belt: Implications for deep subduction and delamination of continental lithosphere. Tectonophysics, 806: 228799

    Article  Google Scholar 

  • Zheng Q S, Zhu J S, Xuan R Q, Cai X L. 2003. An approach to the crustal velocities in southern China (in Chinese). Sediment Geol Tethyan Geol, 23: 9–13

    Google Scholar 

  • Zheng T Y, Zhao L, He Y M, Zhu R X. 2014. Seismic imaging of crustal reworking and lithospheric modification in eastern China. Geophys J Int, 196: 656–670

    Article  Google Scholar 

  • Zheng X F, Ouyang B, Zhang D N, Yao Z X, Liang J H, Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake (in Chinese). Chin J Geophys, 52: 1412–1417

    Article  Google Scholar 

  • Zheng Y F, Wu F Y. 2009. Growth and reworking of cratonic lithosphere. Sci Bull, 54: 3347–3353

    Article  Google Scholar 

  • Zheng Y F, Zhang L, McClelland W C, Cuthbert S. 2012. Processes in continental collision zones: Preface. Lithos, 136–139: 1–9

    Article  Google Scholar 

  • Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269–287

    Article  Google Scholar 

  • Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29: 26–33

    Article  Google Scholar 

  • Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res, 105: 2969–2980

    Article  Google Scholar 

  • Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797

    Article  Google Scholar 

  • Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics (in Chinese). Chin Sci Bull, 54: 1950–1961

    Google Scholar 

Download references

Acknowledgements

Data of permanent stations are from the Data Backup Centre for China Seismograph Network. We would like to thank Professors Shuwen DONG of Nanjing University, Jianhua LI and Yongqian ZHANG of the Chinese Academy of Geological Sciences, Dr. Zhou ZHANG of Guangzhou Institute of Geochemistry, Chinese Academy of Science, and Dr. Guiping YU of Guilin University of Technology, for their valuable comments and suggestions. Thank all the seismic data collection participants and the local authorities and residents who have supported this work. Data of temporary stations in this study are from the geological survey project of China Geological Survey (Grant Nos. 12120114067701, DD20179357, and DD20160082) and the National Natural Science Foundation of China (Grant No. 41574092). This work was supported by the National Natural Science Foundation of China (Grant Nos. 91962110, 41774113, 42174069, 41874055, and 42104099).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinghui Yang, Qiusheng Li or Rong Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, R., Yang, D., Li, Q. et al. Receiver function imaging of dense seismic array and deep dynamic mechanism beneath the eastern South China. Sci. China Earth Sci. 66, 1289–1308 (2023). https://doi.org/10.1007/s11430-022-1046-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1046-7

Keywords

Navigation