Skip to main content
Log in

Terrestrial carbon cycle model-data fusion: Progress and challenges

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The terrestrial carbon cycle is an important component of global biogeochemical cycling and is closely related to human well-being and sustainable development. However, large uncertainties exist in carbon cycle simulations and observations. Model-data fusion is a powerful technique that combines models and observational data to minimize the uncertainties in terrestrial carbon cycle estimation. In this paper, we comprehensively overview the sources and characteristics of the uncertainties in terrestrial carbon cycle models and observations. We present the mathematical principles of two model-data fusion methods, i.e., data assimilation and parameter estimation, both of which essentially achieve the optimal fusion of a model with observational data while considering the respective errors in the model and in the observations. Based upon reviewing the progress in carbon cycle models and observation techniques in recent years, we have highlighted the major challenges in terrestrial carbon cycle model-data fusion research, such as the “equifinality” of models, the identifiability of model parameters, the estimation of representativeness errors in surface fluxes and remote sensing observations, the potential role of the posterior probability distribution of parameters obtained from sensitivity analysis in determining the error covariance matrixes of the models, and opportunities that emerge by assimilating new remote sensing observations, such as solar-induced chlorophyll fluorescence. It is also noted that the synthesis of multisource observations into a coherent carbon data assimilation system is by no means an easy task, yet a breakthrough in this bottleneck is a prerequisite for the development of a new generation of global carbon data assimilation systems. This article also highlights the importance of carbon cycle data assimilation systems to generate reliable and physically consistent terrestrial carbon cycle reanalysis data products with high spatial resolution and long-term time series. These products are critical to the accurate estimation of carbon cycles at the global and regional scales and will help future carbon management strategies meet the goals of carbon neutrality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlström A, Schurgers G, Smith B. 2017. The large influence of climate model bias on terrestrial carbon cycle simulations. Environ Res Lett, 12: 014004

    Article  Google Scholar 

  • Andela N, Morton D C, Giglio L, Chen Y, van der Werf G R, Kasibhatla P S, DeFries R S, Collatz G J, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton J R, Yue C, Randerson J T. 2017. A human-driven decline in global burned area. Science, 356: 1356–1362

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw K T, Pilegaard K, Schmid H P, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2001. A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide water vapor and energy flux densities. Bull Am Meteorol Soc, 82: 2415–2434

    Article  Google Scholar 

  • Beer C, Lucht W, Gerten D, Thonicke K, Schmullius C. 2007. Effects of soil freezing and thawing on vegetation carbon density in Siberia: A modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Glob Biogeochem Cycle, 21: GB1012

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain M A, Baldocchi D, Bonan G B, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson K W, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward F I, Papale D. 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329: 834–838

    Article  Google Scholar 

  • Beven K. 2006. A manifesto for the equifinality thesis. J Hydrol, 320: 18–36

    Article  Google Scholar 

  • Bonan G B, Lombardozzi D L, Wieder W R, Oleson K W, Lawrence D M, Hoffman F M, Collier N. 2019. Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Glob Biogeochem Cycle, 33: 1310–1326

    Article  Google Scholar 

  • Castro-Morales K, Schürmann G, Köstler C, Rödenbeck C, Heimann M, Zaehle S. 2019. Three decades of simulated global terrestrial carbon fluxes from a data assimilation system confronted with different periods of observations. Biogeosciences, 16: 3009–3032

    Article  Google Scholar 

  • Chen B Z, Zhang H F. 2015. Carbon Assimilation System and its Application in China (in Chinese). Beijing: Science Press

    Google Scholar 

  • Chen J M, Ju W M, Liu R G, Li Y, Jiang F. 2015. Remote Sensing and Optimization Method for Global Terrestrial Carbon Sink (in Chinese). Beijing: Science Press

    Google Scholar 

  • Chen J, Hu Y, Yu Y, Lü S. 2015. Ergodicity test of the eddy-covariance technique. Atmos Chem Phys, 15: 9929–9944

    Article  Google Scholar 

  • Cramer W, Kicklighter D W, Bondeau A B, Moore I, Churkina G, Nemry B, Ruimy A, Schloss A L, Intercomparison T E P O T E P. 1999. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Glob Change Biol, 5: 1–15

    Article  Google Scholar 

  • Cressie N, Calder C A, Clark J S, Ver Hoef J M, Wikle C K. 2009. Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecol Appl, 19: 553–570

    Article  Google Scholar 

  • Ding Z L, Duan X N, Ge Q S, Zhang Z Q. 2009. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries. Sci China Ser D-Earth Sci, 52: 1447–1469

    Article  Google Scholar 

  • Du Z, Zhou X, Shao J, Yu G, Wang H, Zhai D, Xia J, Luo Y. 2017. Quantifying uncertainties from additional nitrogen data and processes in a terrestrial ecosystem model with Bayesian probabilistic inversion. J Adv Model Earth Syst, 9: 548–565

    Article  Google Scholar 

  • Fisher R, McDowell N, Purves D, Moorcroft P, Sitch S, Cox P, Hunting-ford C, Meir P, Ian Woodward F. 2010. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol, 187: 666–681

    Article  Google Scholar 

  • Frank D C, Esper J, Raible C C, Büntgen U, Trouet V, Stocker B, Joos F. 2010. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature, 463: 527–530

    Article  Google Scholar 

  • Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha M D, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell J G, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Rammig A, Seneviratne S I, Walz A, Wattenbach M, Zavala M A, Zscheischler J. 2015. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob Change Biol, 21: 2861–2880

    Article  Google Scholar 

  • Friedlingstein P, Jones M W, O’Sullivan M, Andrew R M, Hauck J, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Bakker D C E, Canadell J G, Ciais P, Jackson R B, Anthoni P, Barbero L, Bastos A, Bastrikov V, Becker M, Bopp L, Buitenhuis E, Chandra N, Chevallier F, Chini L P, Currie K I, Feely R A, Gehlen M, Gilfillan D, Gkritzalis T, Goll D S, Gruber N, Gutekunst S, Harris I, Haverd V, Houghton R A, Hurtt G, Ilyina T, Jain A K, Joetzjer E, Kaplan J O, Kato E, Klein Goldewijk K, Korsbakken J I, Landschützer P, Lauvset S K, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Marland G, McGuire P C, Melton J R, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Neill C, Omar A M, Ono T, Peregon A, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Séférian R, Schwinger J, Smith N, Tans P P, Tian H, Tilbrook B, Tubiello F N, van der Werf G R, Wiltshire A J, Zaehle S. 2019. Global carbon budget 2019. Earth Syst Sci Data, 11: 1783–1838

    Article  Google Scholar 

  • Friedlingstein P, O’Sullivan M, Jones M W, Andrew R M, Hauck J, Olsen A, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell J G, Ciais P, Jackson R B, Alin S, Aragão L E O C, Arneth A, Arora V, Bates N R, Becker M, Benoit-Cattin A, Bittig H C, Bopp L, Bultan S, Chandra N, Chevallier F, Chini L P, Evans W, Florentie L, Forster P M, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton R A, Ilyina T, Jain A K, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken J I, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, O’Brien K, Ono T, Palmer P I, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith A J P, Sutton A J, Tanhua T, Tans P P, Tian H, Tilbrook B, van der Werf G, Vuichard N, Walker A P, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W, Yue X, Zaehle S. 2020. Global carbon budget 2020. Earth Syst Sci Data, 12: 3269–3340

    Article  Google Scholar 

  • Friend A D, Arneth A, Kiang N Y, Lomas M, Ogée J, Rödenbeck C, Running S W, Santaren J D, Sitch S, Viovy N, Ian Woodward F, Zaehle S. 2007. FLUXNET and modelling the global carbon cycle. Glob Change Biol, 13: 610–633

    Article  Google Scholar 

  • Ge R, He H L, Ren X L, Zhang L, Yu G R, Smallman L T, Zhou T, Yu S Y, Luo Y Q, Xie Z Q, Wang S L, Wang H M, Zhou G Y, Zhang Q B, Wang A Z, Fan Z X, Zhang Y P, Shen W J, Yin H J, Lin L X. 2019. Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation. Glob Change Biol, 25: 938–953

    Article  Google Scholar 

  • Guo H, Nativi S, Liang D, Craglia M, Wang L, Schade S, Corban C, He G, Pesaresi M, Li J, Shirazi Z, Liu J, Annoni A. 2020. Big Earth Data science: An information framework for a sustainable planet. Int J Digital Earth, 13: 743–767

    Article  Google Scholar 

  • Guo Q, Jin S, Li M, Yang Q, Xu K, Ju Y, Zhang J, Xuan J, Liu J, Su Y, Xu Q, Liu Y. 2020. Application of deep learning in ecological resource research: Theories, methods, and challenges. Sci China Earth Sci, 63: 1457–1474

    Article  Google Scholar 

  • Han M, Yao Q, Lao J, Tang Z, Liu W. 2020. China’s intra- and international carbon emission transfers by province: A nested network perspective. Sci China Earth Sci, 63: 852–864

    Article  Google Scholar 

  • Han R, Tian X. 2019. A dual-pass carbon cycle data assimilation system to estimate surface CO2 fluxes and 3D atmospheric CO2 concentrations from spaceborne measurements of atmospheric CO2. Geosci Model Dev, doi:https://doi.org/10.5194/gmd-2019-54

  • Hararuk O, Luo Y. 2014. Improvement of global litter turnover rate predictions using a Bayesian MCMC approach. Ecosphere, 5: art163

    Article  Google Scholar 

  • Hararuk O, Zwart J A, Jones S E, Prairie Y, Solomon C T. 2018. Modeldata fusion to test hypothesized drivers of lake carbon cycling reveals importance of physical controls. J Geophys Res-Biogeosci, 123: 1130–1142

    Article  Google Scholar 

  • Hickler T, Prentice I C, Smith B, Sykes M T, Zaehle S. 2006. Implementing plant hydraulic architecture within the LPJ dynamic global vegetation model. Glob Ecol Biogeogr, 15: 567–577

    Article  Google Scholar 

  • Huntzinger D N, Michalak A M, Schwalm C, Ciais P, King A W, Fang Y, Schaefer K, Wei Y, Cook R B, Fisher J B, Hayes D, Huang M, Ito A, Jain A K, Lei H, Lu C, Maignan F, Mao J, Parazoo N, Peng S, Poulter B, Ricciuto D, Shi X, Tian H, Wang W, Zeng N, Zhao F. 2017. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci Rep, 7: 4765

    Article  Google Scholar 

  • Ju W M, Tian X J, Jiang F, Liu Y, Fang H L, Zhang Y G, Zhou Y L. 2019. Research progress of high-resolution global carbon assimilation system based on multi-source satellite remote sensing (in Chinese). China Basic Sci, 21: 317–327

    Google Scholar 

  • Kaminski T, Knorr W, Schürmann G, Scholze M, Rayner P J, Zaehle S, Blessing S, Dorigo W, Gayler V, Giering R, Gobron N, Grant J P, Heimann M, Hooker-Stroud A, Houweling S, Kato T, Kattge J, Kelley D, Kemp S, Koffi E N, Köstler C, Mathieu P P, Pinty B, Reick C H, Rödenbeck C, Schnur R, Scipal K, Sebald C, Stacke T, van Scheltinga A T, Vossbeck M, Widmann H, Ziehn T. 2013. The BETHY/JSBACH carbon cycle data assimilation system: Experiences and challenges. J Geophys Res-Biogeosci, 118: 1414–1426

    Article  Google Scholar 

  • Keenan T F, Gray J, Friedl M A, Toomey M, Bohrer G, Hollinger D Y, Munger J W, O’Keefe J, Schmid H P, Wing I S, Yang B, Richardson A D. 2014. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Change, 4: 598–604

    Article  Google Scholar 

  • Keenan T F, Prentice I C, Canadell J G, Williams C A, Wang H, Raupach M, Collatz G J. 2016. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Commun, 7: 13428

    Article  Google Scholar 

  • Lee J E, Berry J A, van der Tol C, Yang X, Guanter L, Damm A, Baker I, Frankenberg C. 2015. Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4. Glob Change Biol, 21: 3469–3477

    Article  Google Scholar 

  • Li D, Niu S, Luo Y. 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol, 195: 172–181

    Article  Google Scholar 

  • Li F, Zeng X L, Song X, Tian D X, Shao P, Zhang D L. 2011. Impact of spin-up forcing on vegetation states simulated by a dynamic global vegetation model coupled with a land surface model. Adv Atmos Sci, 28: 775–788

    Article  Google Scholar 

  • Li X. 2014. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Sci China Earth Sci, 57: 80–87

    Article  Google Scholar 

  • Li X, Wang J, Strahler A H. 2000. Scale effects and scaling-up by geometric-optical model. Sci China Ser E-Technol Sci, 43: 17–22

    Article  Google Scholar 

  • Li X W, Wang Y T. 2013. Prospects on future developments of quantitative remote sensing (in Chinese). Acta Geogr Sin, 68: 1163–1169

    Google Scholar 

  • Li X, Cheng G D, Liu S M, Xiao Q, Ma M, Jin R, Che T, Liu Q, Wang W, Qi Y, Wen J, Li H, Zhu G, Guo J, Ran Y, Wang S, Zhu Z, Zhou J, Hu X, Xu Z. 2013. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull Am Meteorol Soc, 94: 1145–1160

    Article  Google Scholar 

  • Li X, Huang C L, Che T, Jin R, Wang S G, Wang J M, Gao F, Zhang S W, Qiu C J, Wang C H. 2007. Development of a Chinese land data assimilation system: Its progress and prospects. Prog Nat Sci, 17: 881–892

    Article  Google Scholar 

  • Li X, Jin R, Liu S M, Ge Y, Xiao Q, Liu Q H, Ma M G, Ran Y H. 2016. Upscaling research in HiWATER: Progress and prospects (in Chinese). J Remote Sens, 20: 1993–2002

    Google Scholar 

  • Li X, Liu F, Fang M. 2020. Harmonizing models and observations: Data assimilation in Earth system science. Sci China Earth Sci, 63: 1059–1068

    Article  Google Scholar 

  • Li X, Bai Y L. 2010. A Bayesian Filter Framework for Sequential Data Assimilation (in Chinese). Adv Earth Sci, 25: 515–522

    Google Scholar 

  • Lienert S, Joos F. 2018. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions. Biogeosciences, 15: 2909–2930

    Article  Google Scholar 

  • Liu F, Wang L X, Li X, Huang C L. 2020. ComDA: A common software for nonlinear and non-Gaussian land data assimilation. Environ Model Software, 127: 104638

    Article  Google Scholar 

  • Liu M, He H, Ren X, Sun X, Yu G, Han S, Wang H, Zhou G. 2015. The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems. Ecol Model, 303: 30–41

    Article  Google Scholar 

  • Liu S M, Li X, Xu Z W, Che T, Xiao Q, Ma M G, Liu Q H, Jin R, Guo J W, Wang L X, Wang W Z, Qi Y, Li H Y, Xu T R, Ran Y H, Hu X L, Shi S J, Zhu Z L, Tan J L, Zhang Y, Ren Z G. 2018. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China. Vadose Zone J, 17: 180072

    Article  Google Scholar 

  • Liu S M, Xu Z W, Song L S, Zhao Q Y, Ge Y, Xu T R, Ma Y F, Zhu Z L, Jia Z Z, Zhang F. 2016. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric For Meteorol, 230–231: 97–113

    Article  Google Scholar 

  • Liu Y, Wang J, Yao L, Xi C X, Cai Z N, Yang D X, Yin Z S, Gu S Y, Tian L F, Lu N M, Daren L D. 2018. The TanSat mission: Preliminary global observations. Sci Bull, 63: 1200–1207

    Article  Google Scholar 

  • Liu Z, Meng J, Deng Z, Lu P, Guan D, Zhang Q, He K, Gong P. 2020. Embodied carbon emissions in China-US trade. Sci China Earth Sci, 63: 1577–1586

    Article  Google Scholar 

  • Luo Y, Weng E, Wu X, Gao C, Zhou X, Zhang L. 2009. Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models. Ecol Appl, 19: 571–574

    Article  Google Scholar 

  • Luo Y, Ogle K, Tucker C, Fei S, Gao C, LaDeau S, Clark J S, Schimel D S. 2011. Ecological forecasting and data assimilation in a data-rich era. Ecol Appl, 21: 1429–1442

    Article  Google Scholar 

  • Ma H Q, Ma C F, Li X, Yuan W P, Liu Z J, Zhu G F. 2020. Sensitivity and uncertainty analyses of flux-based ecosystem model towards improvement of forest GPP simulation. Sustainability, 12: 2584

    Article  Google Scholar 

  • Medlyn B E, Dreyer E, Ellsworth D, Forstreuter M, Harley P C, Kirschbaum M U F, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D. 2002. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ, 25: 1167–1179

    Article  Google Scholar 

  • Mitchell S, Beven K, Freer J. 2009. Multiple sources of predictive uncertainty in modeled estimates of net ecosystem CO2 exchange. Ecol Model, 220: 3259–3270

    Article  Google Scholar 

  • Mosegaard K, Sambridge M. 2002. Monte Carlo analysis of inverse problems. Inverse Problems, 18: R29–R54

    Article  Google Scholar 

  • Niu S, Wang S, Wang J, Xia J, Yu G. 2020. Integrative ecology in the era of big data—From observation to prediction. Sci China Earth Sci, 63: 1429–1442

    Article  Google Scholar 

  • NOAA Earth System Research Laboratory. 2020. Carbon tracker CT2019B, doi: https://doi.org/10.25925/20201008

  • Norton A J, Rayner P J, Koffi E N, Scholze M, Silver J D, Wang Y P. 2019. Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences, 16: 3069–3093

    Article  Google Scholar 

  • Peng C H. 2000. From static biogeographical model to dynamic global vegetation model: A global perspective on modelling vegetation dynamics. Ecol Model, 135: 33–54

    Article  Google Scholar 

  • Peters W, Jacobson A R, Sweeney C, Andrews A E, Conway T J, Masarie K, Miller J B, Bruhwiler L M, Pétron G, Hirsch A I, Worthy D E, van der Werf G R, Randerson J T, Wennberg P O, Krol M C, Tans P P. 2007. An atmospheric perspective on North American carbon dioxide exchange: Carbon Tracker. Proc Natl Acad Sci USA, 104: 18925–18930

    Article  Google Scholar 

  • Peylin P, Bacour C, MacBean N, Leonard S, Rayner P, Kuppel S, Koffi E, Kane A, Maignan F, Chevallier F, Ciais P, Prunet P. 2016. A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle. Geosci Model Dev, 9: 3321–3346

    Article  Google Scholar 

  • Pianosi F, Beven K, Freer J, Hall J W, Rougier J, Stephenson D B, Wagener T. 2016. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ Model Software, 79: 214–232

    Article  Google Scholar 

  • Pinnington E M, Casella E, Dance S L, Lawless A S, Morison J I L, Nichols N K, Wilkinson M, Quaife T L. 2016. Investigating the role of prior and observation error correlations in improving a model forecast of forest carbon balance using four-dimensional variational data assimilation. Agric For Meteorol, 228–229: 299–314

    Article  Google Scholar 

  • Quegan S, Le Toan T, Chave J, Dall J, Exbrayat J F, Minh D H T, Lomas M, D’Alessandro M M, Paillou P, Papathanassiou K, Rocca F, Saatchi S, Scipal K, Shugart H, Smallman T L, Soja M J, Tebaldini S, Ulander L, Villard L, Williams M. 2019. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sens Environ, 227: 44–60

    Article  Google Scholar 

  • Quillet A, Peng C, Garneau M. 2010. Toward dynamic global vegetation models for simulating vegetation-climate interactions and feedbacks: Recent developments, limitations, and future challenges. Environ Rev, 18: 333–353

    Article  Google Scholar 

  • Rabin S S, Melton J R, Lasslop G, Bachelet D, Forrest M, Hantson S, Kaplan J O, Li F, Mangeon S, Ward D S, Yue C, Arora V K, Hickler T, Kloster S, Knorr W, Nieradzik L, Spessa A, Folberth G A, Sheehan T, Voulgarakis A, Kelley D I, Prentice I C, Sitch S, Harrison S, Arneth A. 2017. The Fire Modeling Intercomparison Project (FireMIP), phase 1: Experimental and analytical protocols with detailed model descriptions. Geosci Model Dev, 10: 1175–1197

    Article  Google Scholar 

  • Ran Y H, Li X, Sun R, Kljun N, Zhang L, Wang X F, Zhu G F. 2016. Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agric For Meteorol, 230–231: 114–127

    Article  Google Scholar 

  • Randerson J T, Hoffman F M, Thornton P E, Mahowald N M, Lindsay K, Lee Y H, Nevison C D, Doney S C, Bonan G, Stöckli R, Covey C, Running S W, Fung I Y. 2009. Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob Change Biol, 15: 2462–2484

    Article  Google Scholar 

  • Raupach M R, Rayner P J, Barrett D J, DeFries R S, Heimann M, Ojima D S, Quegan S, Schmullius C C. 2005. Model-data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Glob Change Biol, 11: 378–397

    Article  Google Scholar 

  • Rayner P J. 2010. The current state of carbon-cycle data assimilation. Curr Opin Environ Sustainability, 2: 289–296

    Article  Google Scholar 

  • Rayner P J, Michalak A M, Chevallier F. 2019. Fundamentals of data assimilation applied to biogeochemistry. Atmos Chem Phys, 19: 13911–13932

    Article  Google Scholar 

  • Reyes J J, Tague C L, Evans R D, Adam J C. 2017. Assessing the impact of parameter uncertainty on modeling grass biomass using a hybrid carbon allocation strategy. J Adv Model Earth Syst, 9: 2968–2992

    Article  Google Scholar 

  • Sakaguchi K, Zeng X, Leung L R, Shao P. 2016. Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4). Environ Res Lett, 11: 124029

    Article  Google Scholar 

  • Scheiter S, Langan L, Higgins S I. 2013. Next-generation dynamic global vegetation models: Learning from community ecology. New Phytol, 198: 957–969

    Article  Google Scholar 

  • Schimel D, Pavlick R, Fisher J B, Asner G P, Saatchi S, Townsend P, Miller C, Frankenberg C, Hibbard K, Cox P. 2015. Observing terrestrial ecosystems and the carbon cycle from space. Glob Change Biol, 21: 1762–1776

    Article  Google Scholar 

  • Scholz K, Hammerle A, Hiltbrunner E, Wohlfahrt G. 2018. Analyzing the effects of growing season length on the net ecosystem production of an Alpine grassland using model-data fusion. Ecosystems, 21: 982–999

    Article  Google Scholar 

  • Scholze M, Buchwitz M, Dorigo W, Guanter L, Shaun Q. 2017. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences, 14: 3401–3429

    Article  Google Scholar 

  • Scholze M, Kaminski T, Knorr W, Vossbeck M, Wu M, Ferrazzoli P, Kerr Y, Mialon A, Richaume P, Rodriguez-Fernandez N, Vittucci C, Wigneron J P, Mecklenburg S, Drusch M. 2019. Mean European carbon sink over 2010–2015 estimated by simultaneous assimilation of atmospheric CO2, soil moisture and vegetation optical depth. Geophys Res Lett, 46: 13796–13803

    Article  Google Scholar 

  • Schürmann G J, Kaminski T, Köstler C, Carvalhais N, Voßbeck M, Kattge J, Giering R, Rödenbeck C, Heimann M, Zaehle S. 2016. Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0. Geosci Model Dev, 9: 2999–3026

    Article  Google Scholar 

  • Smith K W, Reed S, Cleveland C, Ballantyne A P, Anderegg W R L, Wieder W R, Liu Y Y, Running S W. 2016. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat Clim Change, 6: 306–310

    Article  Google Scholar 

  • Tang J, Zhuang Q. 2009. A global sensitivity analysis and Bayesian inference framework for improving the parameter estimation and prediction of a process-based terrestrial ecosystem model. J Geophys Res, 114: D15303

    Article  Google Scholar 

  • Tang J Y, Zhuang Q L. 2008. Equifinality in parameterization of process-based biogeochemistry models: A significant uncertainty source to the estimation of regional carbon dynamics. J Geophys Res, 113: G04010

    Google Scholar 

  • Thornton P E, Rosenbloom N A. 2005. Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Model, 189: 25–48

    Article  Google Scholar 

  • Thum T, Zaehle S, Köhler P, Aalto T, Aurela M, Guanter L, Kolari P, Laurila T, Lohila A, Magnani F, Van Der Tol C, Markkanen T. 2017. Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences, 14: 1969–1987

    Article  Google Scholar 

  • Tian X, Feng X. 2019. An adjoint-free CNOP-4DVar hybrid method for identifying sensitive areas targeted observations: Method formulation and preliminary evaluation. Adv Atmos Sci, 36: 721–732

    Article  Google Scholar 

  • Tian X, Xie Z, Cai Z, Liu Y, Fu Y, Zhang H. 2014. The Chinese carbon cycle data-assimilation system (Tan-Tracker). Chin Sci Bull, 59: 1541–1546

    Article  Google Scholar 

  • Tian X, Zhang H, Feng X, Xie Y. 2018. Nonlinear least squares En4DVar to 4DEnVar methods for data assimilation: Formulation analysis and preliminary evaluation. Mon Weather Rev, 146: 77–93

    Article  Google Scholar 

  • Toda M, Doi K, Ishihara M I, Azuma W A, Yokozawa M. 2020. A Bayesian inversion framework to evaluate parameter and predictive inference of a simple soil respiration model in a cool-temperate forest in western Japan. Ecol Model, 418: 108918

    Article  Google Scholar 

  • Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. 2016. A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv Eng Software, 100: 19–31

    Article  Google Scholar 

  • Wang J M, Wang W Z, Liu S M, Ma M G, Li X. 2009. The problems of surface energy balance closure: An overview and case study (in Chinese). Adv Earth Sci, 24: 705–714

    Google Scholar 

  • Wang J, Li X, Lu L, Fang F. 2013. Estimating near future regional corn yields by integrating multi-source observations into a crop growth model. Eur J Agronomy, 49: 126–140

    Article  Google Scholar 

  • Wang Y P, Trudinger C M, Enting I G. 2009. A review of applications of model-data fusion to studies of terrestrial carbon fluxes at different scales. Agric For Meteorol, 149: 1829–1842

    Article  Google Scholar 

  • Williams M, Schwarz P A, Law B E, Irvine J, Kurpius M R. 2005. An improved analysis of forest carbon dynamics using data assimilation. Glob Change Biol, 11: 89–105

    Article  Google Scholar 

  • Wolf A, Blyth E, Harding R, Jacob D, Keup-Thiel E, Goettel H, Callaghan T. 2008. Sensitivity of an ecosystem model to hydrology and temperature. Clim Change, 87: 75–89

    Article  Google Scholar 

  • Wu Z, Hugelius G, Luo Y, Smith B, Xia J, Fensholt R, Lehsten V, Ahlström A. 2019. Approaching the potential of model-data comparisons of global land carbon storage. Sci Rep, 9: 3367

    Article  Google Scholar 

  • Xia J, Luo Y, Wang Y P, Hararuk O. 2013. Traceable components of terrestrial carbon storage capacity in biogeochemical models. Glob Change Biol, 19: 2104–2116

    Article  Google Scholar 

  • Zaehle S, Sitch S, Smith B, Hatterman F. 2005. Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Glob Biogeochem Cycle, 19: GB3020

    Article  Google Scholar 

  • Zhang L, Luo Y, Yu G, Zhang L. 2010. Estimated carbon residence times in three forest ecosystems of eastern China: Applications of probabilistic inversion. J Geophys Res, 115: G01010

    Google Scholar 

  • Zhang S P, Yi X, Zheng X G, Chen Z Q, Dan B, Zhang X Z. 2014. Global carbon assimilation system using a local ensemble Kalman filter with multiple ecosystem models. J Geophys Res-Biogeosci, 119: 2171–2187

    Article  Google Scholar 

  • Zhang S, Zheng X, Chen J M, Chen Z, Dan B, Yi X, Wang L, Wu G. 2015. A global carbon assimilation system using a modified ensemble Kalman filter. Geosci Model Dev, 8: 805–816

    Article  Google Scholar 

  • Zhou Y Z, Li D, Li X. 2019. The effects of surface heterogeneity scale on the flux imbalance under free convection. J Geophys Res-Atmos, 124: 8424–8448

    Article  Google Scholar 

  • Zhou Y Z, Li D, Liu H P, Li X. 2018. Diurnal variations of the flux imbalance over homogeneous and heterogeneous landscapes. Bound-Layer Meteorol, 168: 417–442

    Article  Google Scholar 

  • Zhu G F, Li X, Su Y H, Huang C L. 2010. Parameterization of a coupled CO2 and H2O gas exchange model at the leaf scale of Populus euphratica. Hydrol Earth Syst Sci, 14: 419–431

    Article  Google Scholar 

  • Zhu G F, Li X, Su Y H, Lu L, Huang C L. 2011. Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv. Tree Physiol, 31: 178–195

    Article  Google Scholar 

  • Zhu G F, Li X, Su Y H, Zhang K, Bai Y, Ma J Z, Li C B, Hu X L, He J H. 2014. Simultaneously assimilating multivariate data sets into the two-source evapotranspiration model by Bayesian approach: Application to spring maize in an arid region of northwestern China. Geosci Model Dev, 7: 1467–1482

    Article  Google Scholar 

  • Zhu G, Li X, Ma J, Wang Y, Liu S, Huang C, Zhang K, Hu X. 2018. A new moving strategy for the sequential Monte Carlo approach in optimizing the hydrological model parameters. Adv Water Resour, 114: 164–179

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41988101, 41801270), and the project of Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2021428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, H., Ran, Y. et al. Terrestrial carbon cycle model-data fusion: Progress and challenges. Sci. China Earth Sci. 64, 1645–1657 (2021). https://doi.org/10.1007/s11430-020-9800-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9800-3

Keywords

Navigation