Skip to main content
Log in

Petrogenetic simulation of the Archean trondhjemite from Eastern Hebei, China

  • Researth Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

It is generally believed that trondhjemitic rock, an important component of TTG rocks, is the anatectic product of mafic rocks. However, in many TTG gneiss terranes, for instance, the granulite facies terrane in Eastern Hebei, trondhjemites occur as small dikes, intrusions or leucosomes in tonalitic gneisses, suggesting their origin of in-situ partial melting. Based on the petrological analysis of a tonalitic gneiss sample from Eastern Hebei, in combination with zircon U-Pb dating, we investigated the petrogenesis of trondhjemite through simulating anatectic reactions and the major and trace element characteristics of the product melt at different pressures (0.7, 1.0 and 2.0 GPa). The results indicate that hornblende dehydration melting in a tonalitic gneiss at 0.9–1.1 GPa and 800–850°C, corresponding to the high-T granulite facies, with melting degrees of 5–10wt.% and a residual assemblage containing 5–10wt.% garnet, can produce felsic melts with a great similarity, for instance of high La/Yb ratios and low Yb contents to the trondhjemitic rocks from Eastern Hebei. However, the modelled melts exhibit relatively higher K2O, and lower CaO and Mg# than those in the trondhjemitic dikes and leucosomes from Eastern Hebei, suggesting that the leucosomes may not only contain some residual minerals but also be subjected to the effect of crystal fractionation. The zircon U-Pb dating for the tonalitic and trondhjemitic rocks in the Eastern Hebei yields a protolith age of 2518±12 Ma and a metamorphic age of 2505±19 Ma for the tonalitic gneiss. The latter age is consistent with a crystallization age of 2506±6 Ma for the trondhjemitic rock, confirming a close petrogenetic relation between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai X, Liu S W, Guo R R, Zhang L F, Wang W. 2014. Zircon U-Pb-Hf isotopes and geochemistry of Neoarchean dioritic-trondhjemitic gneisses, Eastern Hebei, North China Craton: Constraints on petrogenesis and tectonic implications. Precambrian Res, 251: 1–20

    Article  Google Scholar 

  • Bai X, Liu S W, Guo R R, Wang W. 2016. A Neoarchean arc-back-arc system in Eastern Hebei, North China Craton: Constraints from zircon U-Pb-Hf isotopes and geochemistry of dioritic-tonalitic-trondhjemitic-granodioritic (DTTG) gneisses and felsic paragneisses. Precambrian Res, 273: 90–111

    Article  Google Scholar 

  • Barker F. 1979. Trondhjemites, Dacites and Related Rocks. Amsterdam: Elsevier. 1–12

  • Beard J, Lofgren G E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kbar. J Metamorph Geol, 32: 465–501

    Google Scholar 

  • Bedard J H. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta, 70: 1188–1214

    Article  Google Scholar 

  • Bezos A, Humler E. 2005. The Fe3+/SFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta, 69: 711–725

    Article  Google Scholar 

  • Castro A. 2004. The source of granites: Inferences from the Lewisian complex. Scottish J Geol, 40: 49–65

    Article  Google Scholar 

  • Coggon R, Holland T J B. 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol, 20: 683–696

    Article  Google Scholar 

  • Corfu F,, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon txtures. Rev Mineral Geochem, 53: 469–500

    Article  Google Scholar 

  • Condie K C. 1981. Archean Greenstone Belts. Amsterdam: Elsevier. 434

  • Condie K C. 1986. Origin and early growth rate of continents. Precambrian Res, 32: 261–278

    Article  Google Scholar 

  • Condie K C. 2005. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos, 79: 491–504

    Article  Google Scholar 

  • Cottrell E, Kelley K A. 2011. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett, 305: 270–282

    Article  Google Scholar 

  • De Wit M J. 1998. On Archean granites, greenstones, cratons and tectonics: Does the evidence demand a verdict? Precambrian Res, 91: 181–226

    Article  Google Scholar 

  • Diener J F A, Powell R, White R W, Holland T J B. 2007. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaOFeO-MgO-Al2O3-SiO2-H2O-O. J Metamorph Geol, 25: 631–656

    Article  Google Scholar 

  • Drummond M S, Defant M J. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res, 95: 21503–21521

    Article  Google Scholar 

  • Duan Z Z, Wei C J, Qian J H. 2015. Metamorphic P-T paths and zircon U-Pb age data for the Paleoproterozoic metabasic dykes of high-pressure granulite facies from Eastern Hebei, North China Craton. Precambrian Res, 271: 295–310

    Article  Google Scholar 

  • Foley S F, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 637–640

    Article  Google Scholar 

  • Gardien V, Thompson A B, Ulmer P. 2000. Melting of biotite + plagioclase + quartz gneisses: The role of H2O in the stability of amphibole. J Petrol, 41: 651–666

    Article  Google Scholar 

  • Geng Y S, Liu F L, Yang C H. 2006. Magmatic event at the end of the Archean in Eastern Hebei Province and its geological implication. Acta Geol Sin, 80: 819–833

    Google Scholar 

  • Green E C R, Holland T J B, Powell R. 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergiteacmite, with applications to eclogitic rocks. Am Miner, 92: 1181–1189

    Article  Google Scholar 

  • Guo R R, Liu S W, Santosh M, Li Q G, Bai X, Wang W. 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of metavolcanics from Eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton. Gondwana Res, 24: 664–686

    Article  Google Scholar 

  • Guo R R, Liu S W, Wyman D, Bai X, Wang W, Yan M, Li Q G. 2015. Neoarchean subduction: A case study of arc volcanic rocks in Qinglong- Zhuzhangzi area of the Eastern Hebei Province, North China Craton. Precambrian Res, 273: 90–111

    Google Scholar 

  • He G P, Lu L Z, Ye H W, Jin S Q, Ye T S. 1991. The Early Cambrian Metamorphic Evolution in the Eastern Hebei and Southeast of Inner Mongolia. Changchun: Jilin University Press. 218

    Google Scholar 

  • Holland T J B, Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol, 16: 309–343

    Article  Google Scholar 

  • Holland T J B, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contrib Mineral Petrol, 145: 492–501

    Article  Google Scholar 

  • Jahn B M, Peucat J J, Glikson A Y, Hickman A H. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, western Australia: Implications for the early crustal evolution. Geochim Cosmochim Acta, 45: 1633–1652

    Article  Google Scholar 

  • Jahn B M, Zhang Z Q. 1984. Archean granulite gneisses from Eastern Hebei Province, China: Rare earth geochemistry and tectonic implications. Contr Mineral Petrol, 85: 224–243

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J J, Tushipokla J J, Fanning C M. 2015. Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India: Constraints from SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd-Sr isotopes. Precambrian Res, 268: 295–322

    Article  Google Scholar 

  • Le Maitre R W. 1976. The chemical variability of some common igneous rocks. J Petrol, 17: 589–598

    Article  Google Scholar 

  • Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14: 753–756

    Article  Google Scholar 

  • Martin H. 1994. The Archean grey gneisses and the genesis of the continental crust. In: Condie K C, eds. Archean Crustal Evolution. Developments in Precambrian Geology. Amsterdam: Elsevier. 205–259

  • Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411–429

    Article  Google Scholar 

  • Moyen J-F, Stevens G. 2006. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. In: Benn K, Mareschal J C, Condie K C, eds. Archean Geodynamics and Environments, Monographs. Washington: American Geophysical Union. 149–178

    Chapter  Google Scholar 

  • Moyen J F. 2011. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123: 21–36

    Article  Google Scholar 

  • Nutman A P, Wan Y S, Du L L, Friend C R L, Dong C Y, Xie H Q, Wang W, Sun H Y, Liu D Y. 2011. Multistage late Neoarchaean crustal evolution of the North China Craton, Eastern Hebei. Precambrian Res, 189: 43–65

    Article  Google Scholar 

  • Patiño-Douce A E, Beard J S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol, 36: 707–738

    Article  Google Scholar 

  • Patiño-Douce A E. 2005. Vapor-absent melting of tonalite at 15–32 kbar. J Petrol, 46: 275–290

    Article  Google Scholar 

  • Pitcher W S. 1993. The Nature and Origin of Granite. London: Blackie. 316

    Book  Google Scholar 

  • Powell R, Holland T J B, Worley B. 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol, 16: 577–588

    Article  Google Scholar 

  • Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite/ eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 51: 1–25

    Article  Google Scholar 

  • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891–931

    Article  Google Scholar 

  • Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Scientific and Technical. 1–170

  • Rudnick R L, Gao S. 2004. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise of Geochemistry. Amsterdam: Elsevier. 1–64

    Google Scholar 

  • Rushmer T. 1991. Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions. Contr Mineral Petrol, 107: 41–59

    Article  Google Scholar 

  • Rutter M J, Wyllie P J. 1988. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust. Nature, 331: 159–160

    Article  Google Scholar 

  • Sawyer E W. 2008. Atlas of Migmatites. The Canadian Mineralogist. In: Special Publication. Vol. 9. Ottawa: NRC Research Press. 371

    Google Scholar 

  • Singh J, Johannes W. 1996. Dehydration melting of tonalites. Part I. Beginning of melting. Contrib Mineral Petrol, 125: 16–25

    Article  Google Scholar 

  • Singh J, Johannes W. 1996. Dehydration melting of tonalites. Part II. Composition of melts and solids. Contrib Mineral Petrol, 125: 26–44

    Article  Google Scholar 

  • Skjerlie K P, Johnston A D. 1992. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology, 20: 263–266

    Article  Google Scholar 

  • Skjerlie K P, Patiño-Douce A E. 1995. Anatexis of interlayered amphibolite and pelite at 10 kbar: effect of diffusion of major components on phase relations and melt fraction. Contrib Mineral Petrol, 122: 62–78

    Article  Google Scholar 

  • Smithies R H. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett, 182: 115–125

    Article  Google Scholar 

  • Springer W, Seck H A. 1997. Partial fusion of basic granulites at 5 to 15 kbar: Implications for the origin of TTG magmas. Contrib Mineral Petrol, 127: 30–45

    Article  Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc London Spec Publ, 42: 313–345

    Article  Google Scholar 

  • Watkins J M, Clemens J D, Treloar P J. 2007. Archaean TTGs as sources of younger granitic magmas: Melting of sodic metatonalites at 0.6–1.2 GPa. Contrib Mineral Petrol, 154: 91–110

    Article  Google Scholar 

  • Wei C J. 2016. Granulite facies metamorphism and petrogenesis of granite (II): Quantitative modelling of the HT-UHT phase equilibria for metapelites and the petrogenesis of S-type granite. Acta Petrol Sin, 32: 1625–1643

    Google Scholar 

  • White R W, Powell R, Holland T J B, Worley B A. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metamorph Geol, 18: 497–511

    Article  Google Scholar 

  • White R W, Powell R, Clarke G L. 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metamorph Geol, 20: 41–55

    Article  Google Scholar 

  • White R W, Powell R, Holland T J B. 2007. Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol, 25: 511–527

    Article  Google Scholar 

  • Willbold M, Hegner E, Stracke A, Rocholl A. 2009. Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet Sci Lett, 279: 44–52

    Article  Google Scholar 

  • Winther T K, Newton R C. 1991. Experimental melting of a hydrous low-K tholeiite: Evidence on the origin of Archaean cratons. Bull Geol Soc Den, 39: 213–228

    Google Scholar 

  • Wolf M B, Wyllie P J. 1994. Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time. Contr Mineral Petrol, 115: 369–383

    Article  Google Scholar 

  • Wu J S, Geng Y S, Shen Q H, Wan Y S, Liu D Y, Song B. 1998. Archean Geological Characteristics and Tectonic Evolution of Sino Korean Ancient Continent. Beijing: Geological Publishing House. 212

  • Wu Y B, Zheng Y F. 2004. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation. Chin Sci Bull, 49: 1589–1604

    Article  Google Scholar 

  • Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 218: 339–359

    Article  Google Scholar 

  • Yang J H, Wu F Y, Wilde S A, Zhao G C. 2008. Petrogenesis and geodynamics of late Archean magmatism in Eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Res, 167: 125–149

    Article  Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, Lu L Z. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev, 40: 706–721

    Article  Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, Lu L Z. 1999. Thermal evolution of two textural types of mafic granulites in the North China Craton: Evidence for both mantle plume and collisional tectonics. Geol Mag, 136: 223–240

    Article  Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constrains and tectonic evolution. Precambrian Res, 107: 45–73

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Qin Hong for her help in the major element analyses at the Geological Lab Center, China University of Geosciences (Beijing), Liu Mu for her assistance in the trace element analyses at the Geological Institute of Nuclear Industry, and Ma Fang for her assistance in zircon U-Pb analyses at the Key Laboratory of Orogenic Belts and Crustal Evolution, Peking University. Associated professor Tian Wei, Zhang Jinrui, Mr. Li Xianwei, Li Zhuang and Yang Chuan are thanked for their academic discussions in the preparation of this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 41430207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunJing Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wei, C. & Duan, Z. Petrogenetic simulation of the Archean trondhjemite from Eastern Hebei, China. Sci. China Earth Sci. 60, 958–971 (2017). https://doi.org/10.1007/s11430-016-9025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9025-9

Keywords

Navigation