Skip to main content
Log in

A theoretical prediction of chemical zonation in early oceans (>520 Ma)

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Early oceans (>520 Ma) were characterized by widespread water-column anoxia, stratification, and limited oxidant availability, which are comparable to the chemical characteristics of modern marine sedimentary pore-waters in productive continental margins. Based on this similarity and our current understanding of the formation mechanism of early Earth ocean chemistry, we propose an idealized chemical zonation model for early oceans that includes the following redox zones (from shallow nearshore to deep offshore regions): oxic, nitrogenous (NO -3 -NO -2 -enriched), manganous-ferruginous (Mn2+ or Fe2+-enriched), sulfidic (H2S-enriched), methanic (CH4-enriched), and ferruginous (Fe2+-enriched). These zones were dynamically maintained by a combination of processes including surface-water oxygenation by atmospheric free oxygen, nitrate reduction beneath the chemocline, nearshore manganese-iron reduction, sulfate reduction, methanogenesis, and hydrothermal Fe2+ inputs from the deep ocean. Our modified “euxinic wedge” model expands on previous versions of this model, providing a more complete theoretical framework for the chemical zonation of early Earth oceans that helps to explain observations of unusual Mo-S-C isotope patterns. This model may provide a useful foundation for future studies of ocean chemistry evolution and elemental biogeochemical cycles in early Earth history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ader M, Sansjofre P, Halverson G P, Busigny V, Trindade R I F, Kunzmann M, Nogueira A C R. 2014. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective. Earth Planet Sci Lett, 396: 1–13

    Article  Google Scholar 

  • Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem Geol, 268: 211–225

    Article  Google Scholar 

  • Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge. Science, 297: 1137–1142

    Article  Google Scholar 

  • Berner R A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. Am J Sci, 282: 451–473

    Article  Google Scholar 

  • Canfield D E, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA, 106: 8123–7

    Article  Google Scholar 

  • Canfield D E, Ngombi-Pemba L, Hammarlund E U, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann A C, El Albani A. 2013. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere. Proc Nat Acad Sci USA, 110: 16736–16741

    Article  Google Scholar 

  • Canfield D E, Poulton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Strauss H. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321: 949–952

    Article  Google Scholar 

  • Canfield D E, Thamdrup B, Hansen J W. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta, 57: 3867–3883

    Article  Google Scholar 

  • Canfield D E, Thamdrup B. 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term 'suboxic’ would go away. Geobiology, 7: 385–392

    Article  Google Scholar 

  • Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Ann Rev Earth Planet Sci, 33: 1–36

    Article  Google Scholar 

  • Chen X, Ling H, Vance D, Shields-Zhou G A, Zhu M, Poulton S W, Och L M, Jiang S, Li D, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Comm, 6: 7142

    Article  Google Scholar 

  • Cheng M, Li C, Zhou L, Xie S. 2015a. Mo marine geochemistry and reconstruction of ancient ocean redox states. Sci China: Earth Sci, in press

    Google Scholar 

  • Dahl T W, Hammarlund E U, Anbar A D, Bond D P G, Gill B C, Gordon G W, Knoll A H, Nielsen A T, Schovsbo N H, Canfield D E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Nat Acad Sci USA, 107: 17911–17915

    Article  Google Scholar 

  • Dellwig O, Leipe T, März C, Glockzin M, Pollehne F, Schnetger B, Yakushev E V, Böttcher M E, Brumsack H. 2010. A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins. Geochim Cosmochim Acta, 74: 7100–7115

    Article  Google Scholar 

  • Ducklow H, McCallister S L. 2004. The biogeochemistry of carbon dioxide in the coastal oceans. In: Robinson A R, Brink K, eds. The Global Coastal Ocean-Multiscale Interdisciplinary Processes: The Sea. Cambridge: Harvard University Press. 269–315

    Google Scholar 

  • Eigenbrode J L, Freeman K H. 2006. Late Archean rise of aerobic microbial ecosystems. Proc Nat Acad Sci USA, 103: 15759–15764

    Article  Google Scholar 

  • Feng L, Li C, Huang J, Chang H, Chu X. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529–521 Ma) Yangtze platform, South China. Precambr Res, 246: 123–133

    Article  Google Scholar 

  • Fennel K, Follows M, Falkowski P. 2005. The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am J Sci, 305: 526–545

    Article  Google Scholar 

  • Goldberg T, Archer C, Vance D, Poulton S W. 2009. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochim Cosmochim Acta, 73: 6502–6516

    Article  Google Scholar 

  • Goldberg T, Strauss H, Guo Q, Liu C. 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 175–193

    Article  Google Scholar 

  • Ho T Y, Taylor G T, Astor Y, Varela R, Müller-Karger F, Scranton M I. 2004. Vertical and temporal variability of redox zonation in the water column of the Cariaco Basin: Implications for organic carbon oxidation pathways. Mar Chem, 86: 89–104

    Article  Google Scholar 

  • Holland H D. 2006. The oxygenation of the atmosphere and oceans. Phil Trans Royal Soc B: Biol Sci, 361: 903–915

    Article  Google Scholar 

  • Isley A E, Abbott D H. 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J Geophys Res-Atmos, 1041: 15461–15477

    Article  Google Scholar 

  • Jensen M M, Kuypers M M M, Lavik G, Thamdrup B. 2008. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr, 53: 23–36

    Article  Google Scholar 

  • Jiang G, Kaufman A J, Christie-Blick N, Zhang S, Wu H. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett, 261: 303–320

    Article  Google Scholar 

  • Jiang G, Wang X, Shi X, Zhang S, Xiao S, Dong J. 2010. Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian-Ediacaran transition. Earth Planet Sci Lett, 299: 159–168

    Article  Google Scholar 

  • Jin C, Li C, Peng X, Cui H, Shi W, Zhang Z, Luo G, Xie S. 2014. Spatiotemporal variability of ocean chemistry in the early Cambrian, South China. Sci China: Earth Sci, 57: 579–591

    Article  Google Scholar 

  • Johnston D T, Poulton S W, Dehler C, Porter S, Husson J, Canfield D E, Knoll A H. 2010. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth Planet Sci Lett, 290: 64–73

    Article  Google Scholar 

  • Kah L C, Lyons T W, Frank T D. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431: 834–838

    Article  Google Scholar 

  • Kendall B, Creaser R A, Gordon G W, Anbar A D. 2009. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochim Cosmochim Acta, 73: 2534–2558

    Article  Google Scholar 

  • Kendall B, Komiya T, Lyons T W, Bates S M, Gordon G W, Romaniello S J, Jiang G, Creaser R A, Xiao S, McFadden K, Sawaki Y, Tahata M, Shu D, Han J, Li Y, Chu X, Anbar A D. 2015. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochim Cosmochim Acta, 156: 173–193

    Article  Google Scholar 

  • Konovalov S K, Murray J W, Luther G W III. 2005. Basic processes of Black Sea biogeochemistry. Oceanography, 18: 24–35

    Article  Google Scholar 

  • Kump L R, Seyfried W E. 2005. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet Sci Lett, 235: 654–662

    Article  Google Scholar 

  • Lehmann B, Nägler T F, Holland H D, Wille M, Mao J, Pan J, Ma D, Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 35: 403–406

    Article  Google Scholar 

  • Li C, Love G D, Lyons T W, Fike D A, Sessions A L, Chu, X. 2010. A stratified redox model for the Ediacaran ocean. Science, 328: 80–83

    Article  Google Scholar 

  • Li C, Love G D, Lyons T W, Scott C T, Feng L, Huang J, Chang H, Zhang Q, Chu X. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth Planet Sci Lett, 331–332: 246–256

    Article  Google Scholar 

  • Li C, Planavsky N J, Love G D, Reinhard C T, Hardisty D, Feng L J, Bates S M, Huang J, Zhang Q R, Chu X L, Lyons T W. 2015. Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: Insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochim Cosmochim Acta, 150: 90–105

    Article  Google Scholar 

  • Li Y-H, Gregory S. 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta, 38: 703–714

    Article  Google Scholar 

  • Libes S M. 2009. Introduction to Marine Biogeochemistry, 2nd ed. Elsevier, Academic Press. 169–324

    Google Scholar 

  • Loyd S J, Marenco P J, Hagadorn H W, Lyons T W, Kaufman A J, Sour-Tovar F, Corsetti F A. 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California. Earth Planet Sci Lett, 339–340: 79–94

    Article  Google Scholar 

  • Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506: 307–315

    Article  Google Scholar 

  • Murray J W, Fuchsman C, Kirkpatrick J, Paul B, Konovalov S K. 2005. Species and signatures of nitrogen transformation in the suboxic zone of the Black Sea. Oceanography, 18: 36–47

    Article  Google Scholar 

  • Neubert N, Nägler T F, Böttcher M E. 2008. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea. Geology, 36: 775–778

    Article  Google Scholar 

  • Och L M, Shields-Zhou G A, Poulton S W, Manning C, Thirlwall M F, Li D, Chen X, Ling H, Osborn T, Cremonese L. 2013. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambr Res, 225: 166–189

    Article  Google Scholar 

  • Ozaki K, Tajika E. 2013. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry: Implications for greenhouse climates. Earth Planet Sci Lett, 373: 129–139

    Article  Google Scholar 

  • Planavsky N J, Bekker A, Hofmann A, Owens J D, Lyons T W. 2012. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc Nat Acad Sci USA, 109: 18300–18305

    Article  Google Scholar 

  • Planavsky N J, Reinhard C T, Wang X, Thomson D, McGoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346: 635–638

    Article  Google Scholar 

  • Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth's history. Elements, 7: 107–112

    Article  Google Scholar 

  • Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci, 3: 486–490

    Article  Google Scholar 

  • Raiswell R, Canfield D E. 1998. Sources of iron for pyrite formation in marine sediments. Am J Sci, 298: 219–245

    Article  Google Scholar 

  • Raiswell R, Canfield D E. 2012. The iron biogeochemical cycle past and present. Geochem Perspect, 1: 1–220

    Article  Google Scholar 

  • Scholz F, Hensen C, Noffke A, Rohde A, Liebetrau V, Wallmann K. 2011. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area—Response to ENSO-related oxygen fluctuations in the water column. Geochim Cosmochim Acta, 75: 7257–7276

    Article  Google Scholar 

  • Schunck H, Lavik G, Desai D K, Großkopf T, Kalvelage T, Löscher C R, Paulmier A, Contreras S, Siegel H, Holtappels M, Rosenstiel P, Schilhabel M B, Graco M, Schmitz R A, Kuypers M M M, LaRoche J. 2013. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PLoS One, 8: e68661

  • Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456–459

    Article  Google Scholar 

  • Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chem Geol, 324–325: 19–27

    Article  Google Scholar 

  • Thamdrup B. 2000. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B, ed. Advances in Microbial Ecology. Vol. 16. New York: Springer. 41–84

    Article  Google Scholar 

  • Tyrrell T. 1999. The relative infuences of nitrogen and phosphorus on oceanic primary production. Nature, 400: 525–531

    Article  Google Scholar 

  • Wen H, Carignan J, Chu X, Fan H, Cloquet C, Huang J, Zhang Y, Chang H. 2014. Selenium isotopes trace anoxic and ferruginous seawater conditions in the Early Cambrian. Chem Geol, 390: 164–172

    Article  Google Scholar 

  • Wen H, Carignan J, Zhang Y, Fan H, Cloquet C, Liu S. 2011. Molybdenum isotopic records across the Precambrian-Cambrian boundary. Geology, 39: 775–778

    Article  Google Scholar 

  • Wen H, Fan H, Zhang Y, Cloquet C, Carignan J. 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochim Cosmochim Acta, 164: 1–16

    Article  Google Scholar 

  • Wille M, Nägler T F, Lehmann B, Schröder S, Kramers J D. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453: 767–769

    Article  Google Scholar 

  • Wright J M, Colling A, Bearman G. 1995. Seawater: Its Composition, Properties and Behaviour, 2nd ed. New York: Pergamon Press. 166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Cheng, M., Algeo, T.J. et al. A theoretical prediction of chemical zonation in early oceans (>520 Ma). Sci. China Earth Sci. 58, 1901–1909 (2015). https://doi.org/10.1007/s11430-015-5190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5190-7

Keywords

Navigation