Skip to main content
Log in

Toward a unified model of Altaids geodynamics: Insight from the Palaeozoic polycyclic evolution of West Junggar (NW China)

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Altaid tectonic collage extends over Central Asia, exposing numerous accretionary orogens that can account for the Palaeozoic continental crust growth. A pluridisciplinary approach, using geochronological, geochemical, structural and palaeomagnetic tools was carried out to unravel the architecture and the evolution of West Junggar (Northwestern China), a segment of the Altaid Collage. A polycyclic geodynamic evolution is inferred and includes: (1) an Early Palaeozoic cycle, characterized by the closure of two oceanic basins bounded by island-arc systems; (2) an Early Devonian subduction jamming resulting in a minor-scale collision documented by thrusting, syntectonic sedimentation and subsequent crutal thinning associated with alkaline magmatism; (3) a Late Palaeozoic cycle, driven by the evolution of two opposite subduction zones developed upon the Early Palaeozoic basement. Detailed structural analysis and paleomagnetic data provide constraints for the late evolution of Junggar in the frame of the development of the Late Palaeozoic Kazakh orocline, which led to oblique subduction and transpression in the West Junggar accretionary complex. Progressive buckling of the Kazakh orocline further resulted in Late Carboniferous to Permian wrench tectonics, and lateral displacement of lithotectonic units. Block rotations that continued after the Late Triassic are due to diachronous intraplate reactivation. This scenario mirrors the Palaeozoic geodynamics of the Altaid Collage. Multiple Early Palaeozoic collisions of intra-oceanic arcs and micro continents have contributed to the formation of the Kazakhstan Microcontinent. Since the Late Palaeozoic, subductions formed around this microcontinent and the final oblique closure of oceanic domains resulted in the transcurrent collage of Tarim and Siberia cratons. Palaeozoic strike-slip faults were later reactivated during Mesozoic intracontinental tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrajevitch A V, van der Voo R, Bazhenov M L, et al. 2008. The role of the Kazakhstan orocline in the late Palaeozoic amalgamation of Eurasia. Tectonophys, 455: 61–76

    Article  Google Scholar 

  • Alexeiev D V, Ryazantsev A V, Kröner A, et al. 2011. Geochemical data and zircon ages for rocks in a high-pressure belt of Chu-Yili Mountains, southern Kazakhstan: Implications for the earliest stages of accretion in Kazakhstan and the Tianshan. J Asian Earth Sci, 42: 805–820

    Article  Google Scholar 

  • Allen M B, Vincent S J. 1997. Fault reactivation in the Junggar Region, northwest China: The role of basement structures during Mesozoic-Cenozoic compression. J Geol Soc, 154: 151–155

    Article  Google Scholar 

  • An F, Zhu Y F. 2009. SHRIMP U-Pb zircon ages of tuff in Baogutu Formation and their geological significances (in Chinese). Acta Petrol Sin, 25: 1437–1445

    Google Scholar 

  • Bai W J, Robinson P, Yang J S, et al. 1995. Tectonic evolution of different dating ophiolites in the Western Junggar, Xinjiang (in Chinese). Acta Petrol Sin, 11: 62–72

    Google Scholar 

  • Bazhenov, M L, Levashova N M, Degtyarev K E, et al. 2012. Unraveling the Early-Middle Paleozoic Paleogeography of Kazakhstan on the basis of Ordovician and Devonian paleomagnetic results. Gondwana Res, 22: 974–991

    Article  Google Scholar 

  • Beck M E, Burmester R R, Drake R E, et al. 1994. A tale of two continents: Some tectonic contrasts between the central Andes and the North American Cordillera, as illustrated by their paleomagnetic signatures. Tectonics, 13: 215–224

    Article  Google Scholar 

  • BGMRXUAR (Bureau of Geology and Mineral Ressources of Xinjiang Uygur Autonomous Region). 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beiing: Geological Publishing House

    Google Scholar 

  • Buckman S, Aitchison J C. 2001. Middle Ordovician (Llandeilan) radiolarians from West Junggar, Xinjiang, China. Micropaleontol, 47: 359–367

    Article  Google Scholar 

  • Buckman S, Aitchison J C. 2004. Tectonic evolution of Paleozoic terranes in West Junggar, Xinjiang, NW China. In: Malpas J, Fletcher C J, Aitchison J C, eds. Aspects of the Tectonic Evolution of China. Geol Soc London Spec Publ, 226. London: Lyell. 101–129

    Google Scholar 

  • Buslov M M, Saphonova I Y, Watanabe T, et al. 2001. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci J, 5: 203–224

    Article  Google Scholar 

  • Buslov M M, Watanabe T, Fujiwara Y, et al. 2004. Late Paleozoic faults of the Altai region, Central Asia: Tectonic pattern and model of formation. J Asian Earth Sci, 23: 655–671

    Article  Google Scholar 

  • Cai C Y, Wang Y. 1995. Devonian floras. In: Li X X, ed. Fossil Floras of China Through the Geological Ages (in Chinese). Guangzhou: Guangdong Science and Technology Press. 28–77

    Google Scholar 

  • Carignan J, Hild P, Mevelle G, et al. 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newsl, 25: 187–198

    Article  Google Scholar 

  • Carroll A R, Liang Y H, Graham S A, et al. 1990. Junggar Basin, Northwest China-trapped Late Paleozoic ocean. Tectonophys, 181: 1–14

    Article  Google Scholar 

  • Cawood P A, Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci Rev, 82: 217–256

    Article  Google Scholar 

  • Cawood P A, Kröner A, Collins W J, et al. 2009. Accretionary orogen through earth history. In: Cawood P A, Kröner A, eds. Earth Accretionary Systems in Space and Time. Geol Soc London Spec Publ, 318: 1–36

    Article  Google Scholar 

  • Charvet J, Shu L S, Laurent-Charvet S. 2007. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): Welding of the Tarim and Junggar plates. Episodes, 30: 162–186

    Google Scholar 

  • Charvet J, Shu L S, Laurent-Charvet S, et al. 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Sci China Earth Sci, 54: 166–184

    Article  Google Scholar 

  • Chen B, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochim Cosmochim Acta, 69: 1307–1320

    Article  Google Scholar 

  • Chen B, Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. J Asian Earth Sci, 23: 691–703

    Article  Google Scholar 

  • Chen B, Zhu Y F. 2010. Petrology and geochemistry of gabbro in Baikouquan, Keramay (Xinjiang, NW China): Implication of magmatic evolution (in Chinese). Acta Petrol Sin, 26: 2287–2298

    Google Scholar 

  • Chen B, Zhu Y F. 2011. Petrology, geochemistry and zircon U-Pb chronology of gabbro in Darbut ophiolitic mélange, Xinjiang (in Chinese). Acta Petrol Sin, 27: 1746–1758

    Google Scholar 

  • Chen B, Zhu Y F, Wei S N, et al. 2008. Garnet amphibolite found in keramay ophiolitic mélange, western Junggar (in Chinese). Acta Petrol Sin, 24: 1034–1040

    Google Scholar 

  • Chen J F, Han B F, Ji, J Q, et al. 2010a. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos, 115: 137–152

    Article  Google Scholar 

  • Chen J F, Han B F, Zhang L. 2010b. Geochemistry, Sr-Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar, Northwest China (in Chinese). Acta Petrol Sin, 26: 2317–2335

    Google Scholar 

  • Chen J F, Han B F, Zhang L, et al. 2014. Middle Paleozoic initial amalgamation and crustal growth in the West Junggar (NW China): Constraints from geochronology, geochemistry and Sr-Nd-Hf-Os isotopes of calc-alkaline and alkaline intrusions in the Xiemisitai-Saier Mountains. J Asian Earth Sci, doi: 10.1016/j.jseaes.2014.11.028

    Google Scholar 

  • Chen K, Gumiaux C, Augier R, et al. 2011. The Mesozoic palaeorelief of the northern Tian Shan (China). Terra Nova, 23: 195–205

    Article  Google Scholar 

  • Chen S, Guo Z J. 2010. Time constraints, tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar (in Chinese). Acta Petrol Sin, 26: 2336–2344

    Google Scholar 

  • Chen S, Guo Z J, Piper G P, et al. 2013. Late Paleozoic peperites in West Junggar, China, and how they constrain regional tectonic and palaeoenvironmental setting. Gondwana Res, 23: 666–681

    Article  Google Scholar 

  • Chen S, Piper G P, Piper D J W, et al. 2014. Ophiolitic mélanges in crustal- scale fault zones: Implications for the Late Palaeozoic tectonic evolution in West Junggar, China. Tectonics, doi: 10.1002/2013TC003488

    Google Scholar 

  • Chen Y, Cogné J P, Courtillot V, et al. 1991. Paleomagnetic study of Mesozoic continental sediments along the Northern Tien Shan (China) and heterogeneous strain in central Asia. J Geophys Res, 96: 4065–4082

    Article  Google Scholar 

  • Chen Y, Courtillot V, Cogne J P, et al. 1993. The configuration of Asia prior to the collision of India: Cretaceous paleomagnetic constraints. J Geophys Res, 98: 21927–21941

    Article  Google Scholar 

  • Chen Y, Sun M S, Zhang X L. 2006. SHRIMP U-Pb dating of zircons from quzrtz diorite at the southeast side of the Baerkule fault, western Junggar, Xinjiang, China (in Chinese). Geol Bull Chin, 25: 992–994

    Google Scholar 

  • Choulet F. 2011. Mécanismes et évolution des chaînes d’accrétion. Exemples des chaînes paléozoïques d’Asie Centrale (Ouest Junggar, nord-ouest de la Chine). Orléans: Université d’Orléans

    Google Scholar 

  • Choulet F, Chen Y, Cogné J-P. 2013. First Triassic Palaeomagnetic Constraints from Junggar (NW China) and Their Implications for the Mesozoic Tectonics in Central Asia. J Asian Earth Sci, 78: 371–394

    Article  Google Scholar 

  • Choulet F, Chen Y, Wang B. 2011. Late Palaeozoic palegeographic reconstruction of western Central Asia based upon paleomagnetic data and its geodynamic implications. J Asian Earth Sci, 42: 867–884

    Article  Google Scholar 

  • Choulet F, Cluzel D, Faure M, et al. 2012a. New constraints on the pre-Permian continental crust growth of Central Asia (West Junggar, China) by U-Pb and Hf isotopic data from detrital zircon. Terra Nova, 24: 189–198

    Article  Google Scholar 

  • Choulet F, Faure M, Cluzel D, et al. 2012b, From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China. Gondwana Res, 21: 530–547

    Article  Google Scholar 

  • Choulet F, Faure M, Cluzel D, et al. 2012c. Architecture and evolution of accretionary orogens in the Altaids collage: The Early Paleozoic West Junggar (NW China). Am J Sci, 312: 1098–1145

    Article  Google Scholar 

  • Clift PD, Vannucchi P. 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev Geophys, 42: RG2001

  • Cocks L R M, Torsvik T H. 2005. Baltica from the Late Precambrian to Mid-Palaeozoic times: The gain and loss of a terrane’s identity. Earth-Sci Rev, 72: 39–66.

    Article  Google Scholar 

  • Coleman R G. 1989. Continental growth of northwest China. Tectonics, 8: 621–635

    Article  Google Scholar 

  • Collins W J. 2002. Nature of extensional accretionary orogens. Tectonics, 21, doi: 10.1029/2000TC001272

  • Condie K C. 2007. Accretionary orogens in space and time. In: Hatcher R D, Carlson M P, McBride J H, et al, eds. 4-D Framework of the Continental Crust. Geol Soc Am, 200: 145–158

    Article  Google Scholar 

  • Coney P J, Jones D L, Monger J W H. 1980. Cordilleran suspect terranes. Nature, 288: 29–33

    Article  Google Scholar 

  • Degtyarev K E. 1999. Tectonic Evolution of the Early Paleozoic Active Margin in Kazakhstan (in Russian). Moscow: Nauka

    Google Scholar 

  • Degtyarev K E. 2011. Tectonic evolution of Early Paleozoic Island-arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan. Geotectonics, 45: 23–50

    Article  Google Scholar 

  • Degtyarev K E, Ryazantsev A V. 2007. Cambrian arc-continent collision in the paleozoides of Kazakhstan. Geotectonics, 41: 63–86

    Article  Google Scholar 

  • Degtyarev K E, Ryazantsev A V, Kotov A B, et al. 2010. Early Cambrian ophiolites of the Boshchekul Zone (Central Kazakhstan): Structure of sections and age substantiation. Dokl Earth Sci, 431: 413–417

    Article  Google Scholar 

  • Degtyarev K E, Shatagin K N, Kotov A B, et al. 2008. Late Precambrian volcanoplutonic association of the Aktau-Dzhungar massif, Central Kazakhstan: Structural position and age. Dokl Earth Sci, 421: 879–883

    Article  Google Scholar 

  • Fang D, Chen H, Jin G, et al. 1990. Late Paleozoic and Mesozoic paleomagnetism and tectonic evolution of Tarim terrane. In: Wiley T J, Howell D G, Wong F L, eds. Terrane Analysis of China and the Pacific Rim. Circum-Pacific Council for Energy and Mineral Resources. Earth Sci Ser, 13: 251–255

    Google Scholar 

  • Feng Y M. 1987. Characteristics of ancient plate tectonics in West Junggar (in Chinese). Bull Xi’an Inst Geol Min Resour, 18: 141–160

    Google Scholar 

  • Feng Y M, Coleman R G, Tilton G, et al. 1989. Tectonic evolution of the West Junggar region, Xinjiang, China. Tectonics, 8: 729–752

    Article  Google Scholar 

  • Filippova I B, Bush V A, Didenko A N. 2001. Middle Paleozoic subduction belts: The leading factor in the formation of the Central Asian fold-and-thrust belt. Russ J Earth Sci, 3: 405–426

    Article  Google Scholar 

  • Geng H Y, Sun M, Yuan C, et al. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chem Geol, 266: 373–398

    Article  Google Scholar 

  • Geng H Y, Sun M, Yuan C, et al. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. J Asian Earth Sci, 42: 854–866

    Article  Google Scholar 

  • Gilder S A, Gomez J, Chen Y, et al. 2008. A new paleogeographic configuration of the Eurasian landmass resolves a paleomagnetic paradox of the Tarim Basin (China). Tectonics, 27: TC1012

  • Gong Y M. 1993. Process-facies types and sequinces of Devonian volcanlc sedimentary successions in northern Xinjiang and their relation to plate tectonics (in Chinese). Acta Geol Sin, 67: 37–51

    Google Scholar 

  • Gu P Y, Li Y J, Zhang B, et al. 2009. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China (in Chinese). Acta Petrol Sin, 25: 1364–1372

    Google Scholar 

  • Guo H L, Zhu R K, Shao L Y, et al. 2002. Lithofacies palaeogeography of the Carboniferous in the northwest of China (in Chinese). J Paleogeogr, 4: 25–35

    Google Scholar 

  • Guo L S, Liu Y L, Wang Z H, et al. 2010. The zircon U-Pb LA-ICP-MS geochronology of volcanic rocks in Baogutu areas, western Junggar (in Chinese). Acta Petrol Sin, 26: 471–477

    Google Scholar 

  • Han B F, He G Q, Wang S G. 1999. Post-collisional mantle-derived magmatism, underplating and implications for basement of the Junggar basin. Sci China Ser D-Earth Sci, 42: 113–119

    Article  Google Scholar 

  • Han B F, Ji J Q, Song B, et al. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism (in Chinese). Acta Petrol Sin, 22: 1077–1086

    Google Scholar 

  • Han B F, Wang S G, Jahn B M, et al. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chem Geol, 138: 135–159

    Article  Google Scholar 

  • He B C, Tan K R, Wu Q H. 1994. Ages and Sr, Nd isotopic evidences of mantle source magmatate in the Bu’s gold deposit, Jimunai County, Northern Xinjiang (in Chinese). Geotecton Metall, 18: 219–228

    Google Scholar 

  • He G Q, Li M S, Liu D Q, et al. 1994. Paleozoic Crust Evolution and Mineralization in Xinjiang of China (in Chinese). Urumchi: Xinjiang People’s Publishing House

    Google Scholar 

  • He G Q, Li J Y, Hao J, et al. 2001. Crustal Structure and Evolution of Xinjiang, China (in Chinese). Urumqi: Chinese National. 305 Project 07–01

    Google Scholar 

  • He G Q, Liu J B, Zhang Y Q, et al. 2007. Keramay Ophiolitic me´lange formed during Early Paleozoic in western Jungar basin (in Chinese). Acta Petrol Sin, 23: 1573–1576

    Google Scholar 

  • He G Q, Zhao L. 2011. A Tectonic Sketch Map of Central Asia. In: Proceedings of the Fifth Workshop on 1:5M International Geological Map of Asia

    Google Scholar 

  • Hendrix M S, Graham S A, Carroll A R, et al. 1992. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. Geol Soc Am Bull, 104: 53–79

    Article  Google Scholar 

  • Howell D G. 1989. Tectonics of Suspect Terranes: Mountain Building and Continental Growth. London: Chapman & Hall

    Book  Google Scholar 

  • Hsü K J. 1988. Origin of Sedimentary Basins of China. In: Zhu H, ed. Chinese Sedimentary Basins. London: Elsevier. 207–227

    Google Scholar 

  • Hu A Q, Jahn B M, Zhang G X, et al. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophys, 328: 15–51

    Article  Google Scholar 

  • Huang J H, Lu X C, Zhu X N, et al. 1995. Advance in research of the ophiolites in Hongguleleng of North Junggar, Xinjiang. Xinjiang Geol, 13: 20–30

    Google Scholar 

  • Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher C J, Aitchison J C, eds. Aspects of the Tectonic Evolution of China. Geol Soc London Spec Publ, 226: 73–100

    Article  Google Scholar 

  • Jahn B M, Litvinovsky B, Zanvilevich A N, et al. 2009. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis and tectonic significance. Lithos, 113: 521–539

    Article  Google Scholar 

  • Jian P, Liu D Y, Shi Y R, et al. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the central Asian orogenic belt. In: Sklyarov E V, ed. Structural and Tectonic Correlation Across the Central Asian Orogenic Collage: Northeastern Segment. Guidebook and Abstract Volume of the Siberian Workshop IGCP-480

    Google Scholar 

  • Jin C, Xu Y. 1997. Petrology and genesis of the Bieluagaxi granitoids in Tuoli, Xinjiang, China (in Chinese). Acta Petrol Sin, 13: 529–537

    Google Scholar 

  • Jin H J, Li Y C. 1999. Carboniferous biogenic sedimentary structures on the northwestern margin of Jungar Basin. Chin Sci Bull, 44: 368–368

    Article  Google Scholar 

  • Jin Z D, Huang J H, Li F C. 1999. Sm-Nd isotope study and dating on Honguleleng ophiolite in Xinjiang, China. Chin Sci Bull, 44: 1914–1917

    Article  Google Scholar 

  • Jolivet M, Dominguez S. Charreau J, et al. 2010. Mesozoic and Cenozoic tectonic history of the Central Chinese Tian Shan: Reactivated tectonic structures and active deformation. Tectonics, 29: TC6019, doi: 10.1029/2010TC002712

    Article  Google Scholar 

  • Kheraskova T N, Didenko A N, Bush V A, et al. 2003. The Vendian-Early Paleozoic history of the continental margin of eastern Paleogondwana, Paleoasian ocean, and Central Asian foldbelt. Russ J Earth Sci, 5: 165–184

    Article  Google Scholar 

  • Konopelko D, Biske G, Seltmannn R, et al. 2008. Deciphering Caledonian events: Timing and geochemistry of the Caledonian magmatic arc in the Kyrgyz Tien Shan. J Asian Earth Sci, 32: 131–141

    Article  Google Scholar 

  • Konopelko D, Kullerud K, Apayarov F, et al. 2012. SHRIMP zircon chronology of HP-UHP rocks of the Makbal metamorphic complex in the Northern Tien Shan, Kyrgyzstan. Gondwana Res, 22: 300–309

    Article  Google Scholar 

  • Kröner A, Alexeiev D V, Hegner E, et al. 2012. Zircon and muscovite ages, geochemistry, and Nd-Hf isotopes for the Aktyuz metamorphic terrane: Evidence for an Early Ordovician collisional belt in the northern Tianshan of Kyrgyzstan. Gondwana Res, 21: 901–927

    Article  Google Scholar 

  • Kröner A, Kovach V P, Belousova E A et al. 2014. Reassessment of continental growth during the accretionary history of the central Asian orogenic belt. Gondwana Res, 25: 103–125

    Article  Google Scholar 

  • Kwon S T, Tilton G R, Coleman R G, et al. 1989. Isotopic studies veering on the tectonics of the West Junggar region, Xinjiang, China. Tectonics, 8: 719–727

    Article  Google Scholar 

  • Lane N G, Waters J A, Maples C G. 1997. Echinoderm faunas of the Hongguleleng Formation, Late Devonian (Famennian), Xinjiang-uygur Autonomous Region, People’s Republic of China. Paleontol Soc Mem, 47

    Google Scholar 

  • Laurent-Charvet S, Charvet J, Monié P, et al. 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data. Tectonics, 22: 1009–1034

    Article  Google Scholar 

  • Laurent-Charvet S, Charvet J, Shu L S, et al. 2002. Paleozoic late collisional strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China. Terra Nova, 14: 249–256

    Article  Google Scholar 

  • Lei M, Zhao Z D, Hou Q Y, et al. 2008. Geochemical and Sr-Nd-Pb istopic characteristics of the Dalabute ophiolite, Xinjiang: Comparison between the Paleo-Asian ocean and the Tethyan mantle domains (in Chinese). Acta Petrol Sin, 24: 661–672

    Google Scholar 

  • Li H S, (1994. Middle Silurian radiolarians from Keerhada, Xinjiang (in Chinese). Acta Micropalaeontol Sin, 11: 259–272

    Google Scholar 

  • Li J Y, Jin H J. 1989. The trace fossils discovery and its environment significance in Carboniferous turbidite series, the northwest border of Zhunga’er basin, Xinjiang (in Chinese). Sci Geol Sin, 63: 9–15

    Google Scholar 

  • Li X Z, Han B F, Ji J Q, et al. 2004. Geology, geochemistry and K-Ar ages of the Karamay basic-intermediate dike swarm from Xinjiang, China (in Chinese). Geochemistry, 33: 574–584

    Google Scholar 

  • Liu G R, Long Z N, Chen Q Z, et al. 2003. The formation age and geochemical characteristics of volcanic rock of Kuoerzhenkuolas gold mine in Xinjiang (in Chinese). Xinjiang Geol, 21: 177–180

    Google Scholar 

  • Liu X J, Xu J F, Wang S Q, et al. 2009. Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications (in Chinese). Acta Petrol Sin, 25: 1373–1389

    Google Scholar 

  • Liu Y L, Guo L S, Liu Y D, et al. 2009. Geochronology of Baogutu porphyry copper deposit in Western Junggar area, Xinjiang of China. Sci Chin Ser D-Earth Sci, 52: 1543–1549

    Article  Google Scholar 

  • Ma C, Xiao W J, Windley B F, et al. 2012. Tracing a subducted Ridge-transform system in a Late Carboniferous Accretionary prism of the Southern Altaids: Orthogonal Sanukitoid Dyke Swarms in Western Junggar, NW China. Lithos, 140–141: 152–165

    Article  Google Scholar 

  • Meng L, Shen P, Shen Y C. et al. 2010a. The research of igneous petrology, geochemistry and mineral bearing quality in mid segment of Xiemisitai Mountain, Xinjiang (in Chinese). Chin J Geol, 45: 551–563

    Google Scholar 

  • Meng L, Shen P, Shen Y C. et al. 2010b, Igneous rocks geochemistry, zircon U-Pb age and its geological significance in the central section of Xiemisitai area, Xinjiang (in Chinese). Acta Petrol, 26: 3047–3056

    Google Scholar 

  • Mu E Z, Boucot A J, Chen X, et al. 1986. Correlation of the Silurian rocks in China. In: Boucot A B, Berry W B, eds. A Part of the Silurian Correlation for East Asia. Geol Soc Am Sp Pap, 202: 1–80

    Google Scholar 

  • Niu H C, Sato H, Zhang H X, et al. 2006. Juxtaposition of adakite, boninite, high-TiO2 and low-TiO2 basalts in the Devonian southern Altay, Xinjiang, NW China. J Asian Earth Sci, 28: 439–456

    Article  Google Scholar 

  • Qi J Y. 1993. Geology and genesis of dike swarms in western Junggar, Xinjiang, China (in Chinese). Acta Petrol Sin, 9: 288–299

    Google Scholar 

  • Ren R, Han B F, Xu Z, et al. 2014. When did the subduction first initiate in the Southern Paleo-Asian Ocean: New constraints from a Cambrian intra- oceanic arc system in West Junggar, NW China. Earth Planet Sci Lett, 388: 222–236

    Article  Google Scholar 

  • Rudnick R. 1995. Making continental crust. Nature, 378: 571–578

    Article  Google Scholar 

  • Scholl D W, Marlow M S, Cooper A K. 1977. Sediment subduction and off-scraping at Pacific margins. In: Talwani M, Pitman W C III, eds. Island Arcs, Deep-Sea Trenches and Back-Arc Basins. 199–210

    Chapter  Google Scholar 

  • Seltmann R, Konopelko D, Biske G, et al. 2011. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. J Asian Earth Sci, 42: 821–838

    Article  Google Scholar 

  • Sengör A M C, Natal’in B A. 1996. Paleotectonics of Asia: fragments of a synthesis. In: Yin A, Harrison M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press. 486–640

    Google Scholar 

  • Sengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364: 299–307

    Article  Google Scholar 

  • Shen P, Pan H D, Xiao W J, et al. 2013a. Early carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China. Int Geol Rev, 55: 1991–2007

    Article  Google Scholar 

  • Shen P, Pan H D, Xiao W J, et al. 2013b. Two geodynamic-metallogenic events in the Balkash (Kazakhstan) and the West Junggar (China): Carboniferous porphyry Cu and Permian greisen W-Mo mineralization. Int Geol Rev, 55: 1660–1687

    Article  Google Scholar 

  • Shen P, Pan H D, Xiao W J, et al. 2014. An Ordovician intra-oceanic subduction system influenced by ridge subduction in the West Junggar, Northwest China. Int Geol Rev, 56: 206–223

    Article  Google Scholar 

  • Shen P, Shen Y C, Li X H, et al. 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: A geochemical and geochronological approach, Lithos, 140–141: 103–118

    Article  Google Scholar 

  • Shen P, Shen Y C, Liu T B, et al. 2007. Genesis of volcanic-hosted gold deposits in the Sawur Gold Belt, Northern Xinjiang, China: Evidence from REE, stable isotopes, and noble gas isotopes. Ore Geol Rev, 32: 207–226

    Article  Google Scholar 

  • Shen P, Shen Y C, Liu T B, et al. 2008. Geology and geochemistry of the Early Carboniferous eastern sawur caldera complex and associated gold epithermal mineralization, Sawur Mountains, Xinjiang, China. J Asian Earth Sci, 32: 259–279

    Article  Google Scholar 

  • Shen P, Shen Y C, Liu T B, et al. 2009. Geochemical signature of porphyries in the Baogutu porphyry copper belt, western Junggar, NW China. Gondwana Res, 16: 227–242

    Article  Google Scholar 

  • Song B, Li J Y, Zhang J, et al. 2011. Zircon SHRIMP U-Pb age of Targen monzogranite in western Junggar, Xinjiang, China: Initial time of left-lateral slip of the Tuoli fault (in Chinese). Geol Bull Chin, 30, 19–25

    Google Scholar 

  • Soto F, Lin B. 2000. Corales rugosos de la Formacion Hongguleleng (Fameniense) en el N de Sinkiang (NO de China) (in Spanish). Geobios, 33: 527–541

    Article  Google Scholar 

  • Su Y P, Tang H F, Hou G S, et al. 2006. Geochemistry of aluminous A-type granites along Darabut tectonic belt in West Junggar, Xinjiang (in Chinese). Geochemistry, 35: 1–5

    Google Scholar 

  • Suttner T J, Kido E, Chen XQ, et al. 2014. Stratigraphy and facies development of the marine Late Devonian near the boulongour reservoir, Northwest Xinjiang, China. J Asian Earth Sci, 80: 101–118

    Article  Google Scholar 

  • Tang G, Wang Q, Wyman D A, et al. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chem Geol, 277: 281–300

    Article  Google Scholar 

  • Tang G, Wang Q, Wyman D A, et al. 2012a. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 128–131: 73–83

    Article  Google Scholar 

  • Tang G, Wang Q, Wyman D A, et al. 2012b. Late Carboniferous high end(t)-ehf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 140–141: 85–101

    Google Scholar 

  • Tang G, Wang Q, Zhao Z H et al. 2009. Geochronology and geochemistry of the ore-bearing porphyries in the Baogutu area (western Junggar): Petrogenesis and their implications for tectonics and Cu-Au mineralization (in Chinese). Sci Geol Sin, 34: 56–74

    Google Scholar 

  • Tang G, Wyman D A, Wang Q, et al. 2012c. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the Western Junggar Area (NW China). Earth Planet Sci Lett, 329–330: 84–96

    Article  Google Scholar 

  • Tao H F, Wang Q C, Yang X F, et al. 2013. Provenance and tectonic setting of Late Carboniferous clastic rocks in West Junggar, Xinjiang, China: A Case from the Hala-Alat Mountains. J Asian Earth Sci, 64: 210–222

    Article  Google Scholar 

  • Tu G C. 1993. New progress of Solid Geoscience in Nothern Xinjiang (in Chinese). Beijing: Science Press

    Google Scholar 

  • van der Voo R. 1993. Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge: Cambridge University Press

    Google Scholar 

  • van der Voo R, Abrajevitch A V, Bazhenov M L, et al. 2008. A Late Paleozoic orocline that developed in the central Asian triangle between the converging Baltica, Siberia and Tarim cratons. Oslo: 33rd International Geological Congress

    Google Scholar 

  • von Huene R, Scholl D W. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys, 28: 279–316

    Article  Google Scholar 

  • Wang B, Chen Y, Zhan S, et al. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt. Earth Planet Sci Lett, 263: 288–308

    Article  Google Scholar 

  • Wang B, Cluzel D, Shu L S, et al. 2009. Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan. Int J Earth Sci, 98: 1275–1298

    Article  Google Scholar 

  • Wang, B, Jahn B M, Lo C H, et al. 2011. Structural analysis and 40Ar/39Ar thermochronology of proterozoic rocks in Sailimu Area (NW China): Implication to polyphase tectonics of the North Chinese Tianshan. J Asian Earth Sci, 42: 839–853

    Article  Google Scholar 

  • Wang, B, Jahn B M, Shu L S, et al. 2012. Middle-Late Ordovician arc-type plutonism in the NW Chinese Tianshan: Implication for the accretion of the Kazakhstan Continent in Central Asia. J Asian Earth Sci, 49: 40–53

    Article  Google Scholar 

  • Wang R, Zhu Y F. 2007. Geology of the Baobei gold deposit in Western Juggar and zircon SHRIMP age of its wall-rocks, Western Junggar (Xinjiang, NW China) (in Chinese). Geo J Chin Univ, 13: 590–602

    Google Scholar 

  • Wang X W. 2010. The Research on Akeqiaoke Granite and Mineralization in West Junggar, Xinjiang (in Chinese). Lanzhou: Lanzhou University

    Google Scholar 

  • Wang Y J. 1997. An Upper Devonian (Fammenian) radioliarian fauna from carbonate rocks, northern Xinjiang. Acta Micropaleontol Sin, 14: 149–160

    Google Scholar 

  • Wang Y, Wei W, Pang X Y, et al. 2009b. Sedimentary characters during the Late Devonian in Tacheng area and their tectono-paleogeography signification (in Chinese). Acta Petrol Sin, 25: 699–707

    Google Scholar 

  • Wang Z H, Sun S, Li J L, et al. 2003. Paleozoic tectonic evolution of the northern Xinjiang, China: Geochemical and geochronolgical constrains from the ophiolites. Tectonics, 22: 1014

    Article  Google Scholar 

  • Waters J, Maples C G, Lane G, et al. 2003. A quadrupling of Famennian pelmatozoan diversity: New Late Devonian blastoids and crinoids from northwest China. J Paleontol, 77: 922–948

    Article  Google Scholar 

  • Wei R Z. 2010a. Geochemistry and chronology of the Laba intrusion in western Junggar, Xinjiang (in Chinese). Acta Petrol Mineral, 29: 663–674

    Google Scholar 

  • Wei R Z. 2010b. The Mayileshan pillow (western Junggar, Xinjiang) and their tectonic implications: Constraints from the geological and geochemical characteristics and Rb-Sr isochron ages (in Chinese). Xinjiang Geol, 28: 229–235

    Google Scholar 

  • Wei R Z, Dong A G, Li S, et al. 2011. Discovery and significance of Early Devonian fossils in the Mayileshan area, western Junggar, Xinjiang, China (in Chinese). Geol Bull China, 30: 101–105

    Google Scholar 

  • Wei W, Pang X Y, Wang Y, et al. 2009. Sediment facies, provenance evolution and their implications of the Lower Devonian in Shaerbuerti mountain in North Xinjiang (in Chinese). Acta Petrol Sin, 25: 689–698

    Google Scholar 

  • Wilhem C, Windley B F, Stampfli G M. 2012. The altaids of Central Asia: A tectonic and evolutionary innovative review. Earth-Sci Rev, 113: 303–341

    Article  Google Scholar 

  • Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic belt. J Geol Soc, 164: 31–47

    Article  Google Scholar 

  • Wu B, He G Q, Wu T R, et al. 2006. Discovery of the Buergen ophiolitic mélange belt in Xinjiang and its tectonic significance (in Chinese). Geol Chin, 33: 476–486

    Google Scholar 

  • Xia F. 1996. New knowledge on the age of Hongguleleng Formation in the northwestern margin of Junggar Basin, northern Xinjiang (in Chinese). Acta Micropaleontol Sin, 13: 277–285

    Google Scholar 

  • Xiao W J, Han C M, Yuan C, et al. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. J Asian Earth Sci, 32: 102–117

    Article  Google Scholar 

  • Xiao W J, Huang B C, Han C M, et al. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res, 18: 253–273

    Article  Google Scholar 

  • Xiao W J, Windley B F, Huang B C, et al. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Int J Earth Sci, 98: 1189–1217

    Article  Google Scholar 

  • Xiao X, Tang Y, Feng Y, et al. 1992. Tectonic Evolution of the Northern Xinjiang and its Adjacent Regions (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Xiao X, Tang Y, Li J Y, et al. 1991. Tectonic Evolution of the Southern Margin of the Paleo-Asian Ocean Composite Gigantic suture (in Chinese). Beijing: Beijing Science and Technology Press

    Google Scholar 

  • Xu H H, Wang Y. 2008. The palaeogeographical significance of specimens attributed to Protolepidodendron scharyanum Krejci (Lycopsida) from the Middle Devonian of North Xinjiang, China. Geol Mag, 145: 295–299.

    Article  Google Scholar 

  • Xu H H, Marshall J E A, Wang Y, et al. 2014. Devonian Spores from an Intra-Oceanic Volcanic Arc, West Junggar (Xinjiang, China) and the Palaeogeographical Significance of the Associated Fossil Plant Beds. Rev Palaeobot Palynol, 206: 10–22

    Article  Google Scholar 

  • Xu J D, Ma Z J, Qu G S, et al. 2008. Study on basin-range coupling along northwestern margin of Junggar Basin. Xinjiang Petr Geol 29: 143–146

    Google Scholar 

  • Xu X, He G Q, Li H Q, et al. 2006. Basic characteristics of the Karamay ophiolitic mélange, Xinjiang, and its zircon SHRIMP dating (in Chinese). Geol China, 3: 470–475

    Google Scholar 

  • Xu Q Q, Ji J Q, Han B F, et al. 2008. Petrology, geochemistry and geochronology of the intermediate to mafic dykes in northern Xinjiang since Late Paleozoic (in Chinese). Acta Petrol Sin, 24: 977–996

    Google Scholar 

  • Xu Z, Han B F, Ren R, et al. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic intra-oceanic subduction-accretion process. Lithos 132–133: 141–161

    Article  Google Scholar 

  • Xu Z, Han B F, Ren R et al. 2013. Palaeozoic multiphase magmatism at Barliek Mountain, southern West Junggar, Northwest China: Implications for tectonic evolution of the West Junggar. Int Geol Rev, 55: 633–656

    Article  Google Scholar 

  • Yakubchuk A S. 2008. Re-deciphering the tectonic jigsaw puzzle of northern Eurasia. J Asian Earth Sci, 32: 82–101

    Article  Google Scholar 

  • Yakubchuk A S, Shatov V V, Kirwin D, et al. 2005. Gold and base metal metallogeny of the Central Asian orogenic supercollage. 100th Anniv Vol of Econ Geol. 1069–1096

    Google Scholar 

  • Yang G X, Li Y J, Gu P Y, et al. 2012a. Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. Gondwana Res, 21: 1037–1049

    Article  Google Scholar 

  • Yang G X, Li Y J, Santosh M, et al. 2012b. Neoproterozoic mantle plume in the Paleoasian Ocean: Evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China. Lithos, 140–141: 53–65

    Article  Google Scholar 

  • Yang G X, Li Y J, Xiao W J, et al. 2014a. Petrogenesis and tectonic implications of the middle Silurian volcanic rocks in northern West Junggar, NW China. Int Geol Rev, 56: 869–884

    Article  Google Scholar 

  • Yang G X, Li Y J, Yan J, et al. 2014b. Geochronological and geochemical constraints on the origin of the 304±5 Ma Karamay A-type granites from West Junggar, Northwest China: Implications for understanding the Central Asian Orogenic Belt. Int Geol Rev, 56: 393–407

    Article  Google Scholar 

  • Yang G X, Li Y J, Yang B K, et al. 2012c. Geochemistry of Basalt from the Barliek Ophiolitic Mélange in West Junggar and its tectonic implications (in Chinese). Acta Geol Sin, 86: 188–197

    Article  Google Scholar 

  • Yang J H, Chung S L, Wilde S A, et al. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 214: 99–125

    Article  Google Scholar 

  • Yi Z Y, Huang B C, Xiao W J, et al. 2013. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the Western Altaids. Gondwana Res, December. Inter Assoc Gondwana Res, doi: 10.1016/j.gr.2013.11.006

    Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Article  Google Scholar 

  • Yin A, Nie S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A, Harrison M, eds. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press. 442–485

    Google Scholar 

  • Yin J Y, Yuan C, Sun M, et al. 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Res, 17: 145–152

    Article  Google Scholar 

  • Yuan X, Zho Y, Zhang C. 1994. Evidences for the West China cratons and its evolution. In: Coleman R G, ed. Reconstruction of the Paleo-Asian Ocean. Utrecht: Proceedings 29th Internatational Geological Congress. 39–51

    Google Scholar 

  • Zhan Y, Hou G T, Hari K R, et al. 2014. Geochemical and isotopic constraints on the evolution of Late Paleozoic dyke swarms in West Junggar, Xinjiang, China. J Asian Earth Sci, doi: 10.1016/j.jseaes.2014.07.012

    Google Scholar 

  • Zhang C. 1990. The geological character and mineralization of the Western Junggar ophiolites in Xinjiang, China (in Chinese). Report of the Geoscience of Xinjiang, Project 305

    Google Scholar 

  • Zhang C, Huang X. 1992. The age and tectonic settings of ophiolites in West Junggar, Xinjiang. Geol Rev, 38: 509–523

    Google Scholar 

  • Zhang C, Zhai M G, Allen M B, et al. 1993. Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central Asia. J Geol Soc London, 150: 551–561

    Article  Google Scholar 

  • Zhang, C L, Santosh M, Zou H B, et al. 2012. Revisiting the “Irtish Tectonic Belt”: Implications for the paleozoic tectonic evolution of the Altai Orogen. J Asian Earth Sci, 52: 117–133

    Article  Google Scholar 

  • Zhang J, Xiao W J, Han C M, et al. 2011a. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in Western Junggar, NW China. Gondwana Res, 19: 958–974

    Article  Google Scholar 

  • Zhang J, Xiao W J, Han C M, et al. 2011b. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos, 125: 592–606

    Article  Google Scholar 

  • Zhang L C, Wan B, Jiao X J, et al. 2006. Characteristics and geological significance of adakitic rocks in copper-bearing porphyry in Baogutu, western Junggar (in Chinese). Geol Chin, 33: 626–631

    Google Scholar 

  • Zhang L F, (1997. The 40Ar/39Ar metamorphic ages of Tangbale blueschists and their geological significance in West Junggar of Xinjiang (in Chinese). Chin Sci Bull, 42: 1902–1904

    Article  Google Scholar 

  • Zhang X, Zhang H. 2014. Geochronological, Geochemical, and Sr–Nd–Hf Isotopic Studies of the Baiyanghe A-Type Granite Porphyry in the Western Junggar: Implications for Its Petrogenesis and Tectonic Setting. Gondwana Res 25: 1554–1569

    Article  Google Scholar 

  • Zhang Y Y, Guo Z J. 2010. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection (in Chinese). Acta Petrol Sin, 26: 421–430

    Article  Google Scholar 

  • Zhao L, He G Q. 2013. Tectonic entities connection between West Junggar (NW China) and East Kazakhstan. J Asian Earth Sci, 72: 25–32

    Article  Google Scholar 

  • Zhao L, He G Q. 2014. Geochronology and geochemistry of the Cambrian (~518 Ma) Chagantaolegai ophiolite in northern West Junggar (NW China): Constraints on spatiotemporal characteristics of the Chingiz- Tarbagatai megazone. Int Geol Rev, doi: 10.1080/00206814.2014.926783

    Google Scholar 

  • Zhou T F, Yuan F, Fan Y, et al. 2006. Geodynamic significance of the A-type granites in the Sawuer region in west Junggar, Xinjiang: Rock geochemistry and SHRIMP zircon age evidence. Sci China Ser D-Earth Sci, 49: 113–123

    Article  Google Scholar 

  • Zhou T F, Yuan F, Fan Y, et al. 2008. Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance. Lithos, 106: 191–206

    Article  Google Scholar 

  • Zhu B Q, Feng Y M, Ye L H. 1987. Paleozoic Ophiolites in West Junggar and Their Geological Significance, Symposium on Plate Tectonics of Northern China (in Chinese). Beijing: Geological Publishing House. 19–28

    Google Scholar 

  • Zhu RX, Yang Z Y, Wu H N, et al. 1998. Paleomagnetic constraints on the tectonic history of the major blocks of China during the Phanerozoic. Sci China Ser D-Earth Sci, 41(Suppl): 1–19

    Article  Google Scholar 

  • Zhu Y F, Chen B, Xu X. 2013. A new geological map of the western Junggar, north Xinjiang (NW China): Implications for Paleoenvironmental reconstruction. Episodes, 36: 205–220

    Google Scholar 

  • Zhu Y F, Xu X. 2006. The discovery of Early Ordovian ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China (in Chinese). Acta Petrol Sin, 22: 2833–2842

    Google Scholar 

  • Zhu Y F, Xu X. 2007. Exsolution texture of two-pyroxenes in lherzolite from Baijiangtan ophiolitic melange, Western Junggar, China (in Chinese). Acta Petrol Sin, 23: 1075–1086

    Google Scholar 

  • Zhu Y F, Xu X, Chen B, et al. 2008. Dolomite marble and garnet amphibolite in the ophiolitic melange in western Junggar: Relics of the Early Paleozoic oceanic crust and its deep subduction (in Chinese). Acta Petrol Sin, 24: 2767–2777

    Google Scholar 

  • Zhu Y F, Xu X, Wei S N, et al. 2007. Geochemistry and tectonic significance of OIB-type pillow basalts in western Mts. of Karamay city (western Junggar), NW China (in Chinese). Acta Petrol Sin, 23: 1739–1748

    Google Scholar 

  • Zykov S I, Stupnikova N I, Filatova L I. 1977. Lead-uranium-thorium dating of Precambrian metamorphic rocks of central Kazakhstan (in Russian). Izvestiya Akad Nauk USSR Geol Ser, 5: 20–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavien Choulet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choulet, F., Faure, M., Cluzel, D. et al. Toward a unified model of Altaids geodynamics: Insight from the Palaeozoic polycyclic evolution of West Junggar (NW China). Sci. China Earth Sci. 59, 25–57 (2016). https://doi.org/10.1007/s11430-015-5158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5158-7

Keywords

Navigation