Skip to main content
Log in

In-situ U-Pb dating of uraninite by fs-LA-ICP-MS

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, the Pb/U fractionation between zircon and uraninite during femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry (fs-LA-ICP-MS) analysis was studied in detail. The results show significant Pb/U fractionation between zircon and uraninite during fs-LA-ICP-MS analysis that when calibrated against the zircon standard M257, the obtained U-Pb age of the Chinese national uraninite standard GBW04420 is 17% older than the recommended value. Thus, the accurate in-situ U-Pb dating of uraninite by LA-ICP-MS requires matrix-matched external standards for calibration. Uraninite in thin sections of two U-mineralized leucogranite from the Gaudeanmus in Namibia was analyzed by a fs-LA-ICP-MS equipped with a Signal Smooth Device (SSD), using laser spot and frequency of 10 µm and 1 Hz, respectively. When calibrated using GBW04420 as the external standard, two samples give weighted mean 206Pb/238U ages of 504±3 Ma (2σ, n=21) and 503±3 Ma (2σ, n=22), and only one of two samples yields a concordia U-Pb age of 507±1 Ma (2σ, n=21). These results are consistent with ID-TIMS U-Pb ages of 509±1 and 508±12 Ma and are also indistinguishable from zircon U-Pb upper intercept ages of 506±33 Ma (2σ, n=29) and 501±51 Ma (2σ, n=29). The present study shows that in-situ U-Pb dating of uraninite can deliver more reliable formation ages of the deposit than dating coeval high-U zircon because the latter commonly suffer significant Pb loss after formation. Our results confirm that GBW04420 is an ideal matrix matching standard for in-situ U-Pb dating of uraninite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basson I J, Greenway G. 2004. The Rössing uranium deposit: A product of late-kinematic localization of uraniferous granites in the Central Zone of the Damara Orogen, Namibia. J Afr Earth Sci, 38: 413–435

    Article  Google Scholar 

  • Boltwood B B. 1907. The ultimate disintegration products of radioactive elements, Part II. The disintegration products of uranium. Am J Sci, 23: 77–88

    Google Scholar 

  • Bowles J F W. 1990. Age dating of individual grains of uraninite in rocks from electron-microprobe analyses. Chem Geol, 83: 47–53

    Article  Google Scholar 

  • Briqueu L, Lancelot J R, Valois J P, Walgenwitz F. 1980. Géochronologie U-Pb et genèse d'un type de minéralisation uranifère: Les alaskites de Goanikontès (Namibie) et leur encaissant. Bulletin des Centre de Recherches Exploration-Production Elf-Aquitanie, 4: 759–811

    Google Scholar 

  • Carl C, Vonpechmann E, Hohndorf A, Ruhrmann G. 1992. Mineralogy and U/Pb, Pb/Pb, and Sm/Nd geochronology of the Key Lake uranium deposit, Athabasca basin, Saskatchewan, Canada. Can J Earth Sci, 29: 879–895

    Article  Google Scholar 

  • Chen J Y. 2014. The mineralization mechanism study of leucogranite-type uranium deposit in Gaudeanmus, Namibia (in Chinese with English abstract). Doctoral Dissertation. Beijing: Beijing Research Institute of Uranium Geology

    Google Scholar 

  • Chipley D, Polito P A, Kyser T K. 2007. Measurement of U-Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS. Am Mineral, 92: 1925–1935

    Article  Google Scholar 

  • Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of Zircon Textures. Rev Mineral Geochem, 53: 469–500

    Article  Google Scholar 

  • Cross A, Jaireth S, Rapp R, Armstrong R. 2011. Reconnaissance-style EPMA chemical U-Th-Pb dating of uraninite. Aust J Earth Sci, 58: 675–683

    Article  Google Scholar 

  • D’Abzac F X, Seydoux-Guillaume A M, Chmeleff J, Datas L, Poitrasson F. 2012. In situ characterization of infra red femtosecond laser ablation in geological samples. Part B: the laser induced particles. J Anal Atom Spectrom, 27: 108–119

    Article  Google Scholar 

  • Decree S, Deloule E, De Putter T, Dewaele S, Mees F, Yans J, Marignac C. 2011. SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context. Ore Geol Rev, 40: 81–89

    Article  Google Scholar 

  • Eggins S M, Kinsley L P J, Shelley J M G. 1998. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci, 127–129: 278–286

    Article  Google Scholar 

  • Ewing R C, Meldrum A, Wang L, Weber W J, Corrales L R. 2003. Radiation Effects in Zircon. Rev Mineral Geochem, 53: 387–425

    Article  Google Scholar 

  • Fayek M, Harrison T M, Ewing R C, Grove M, Coath C D. 2002a. O and Pb isotopic analyses of uranium minerals by ion microprobe and U-Pb ages from the Cigar Lake deposit. Chem Geol, 185: 205–225

    Article  Google Scholar 

  • Fayek M, Harrison T M, Grove M, Coath C D. 2000. A rapid in situ method for determining the ages of uranium oxide minerals: Evolution of the Cigar Lake deposit, Athabasca Basin. Int Geol Rev, 42: 163–171

    Article  Google Scholar 

  • Fayek M, Kyser T K, Riciputi L R. 2002b. U and Pb isotope analysis of uranium minerals by ion microprobe and the geochronology of the McArthur River and Sue Zone uranium deposits, Saskatchewan, Canada. Can Mineral, 40: 1553–1569

    Article  Google Scholar 

  • Ge X K, Qin M K. 2011. Review on the application of electron microprobe chemical dating method in the age research of uraninite/pitchblende (in Chinese with English abtract). World Nucl Geosci, 28: 55–62

    Google Scholar 

  • Günther D, Hattendorf B. 2005. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. Trac-Trend Anal Chem, 24: 255–265

    Article  Google Scholar 

  • Günther D, Heinrich C A. 1999. Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. J Anal Atom Spectrom, 14: 1369–1374

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3: 43–50

    Article  Google Scholar 

  • Golubev V, Makar’ev L, Bylinskaya L. 2008. Deposition and remobilization of uranium in the North Baikal region: evidence from the U-Pb isotopic systems of uranium ores. Geol Ore Deposit, 50: 482–490

    Article  Google Scholar 

  • Gray A L. 1985. Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry. Analyst, 110: 551–556

    Article  Google Scholar 

  • Hidaka H, Janeczek J, Skomurski F N, Ewing R C, Gauthier-Lafaye F. 2005. Geochemical fixation of rare earth elements into secondary minerals in sandstones beneath a natural fission reactor at Bangombé, Gabon. Geochim Cosmochim Acta, 69: 685–694

    Article  Google Scholar 

  • Hidaka H, Kikuchi M. 2010. SHRIMP in situ isotopic analyses of REE, Pb and U in micro-minerals bearing fission products in the Oklo and Bangombe natural reactors: A review of a natural analogue study for the migration of fission products. Precambrian Res, 183: 158–165

    Article  Google Scholar 

  • Hills J H, Richards J R. 1976. Pitchblende and galena ages in the Alligator Rivers region, Northern Territory, Australia. Miner Deposita, 11: 133–154

    Article  Google Scholar 

  • Hirata T, Kon Y. 2008. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry. Anal Sci, 24: 345–353

    Article  Google Scholar 

  • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem, 53: 27–62

    Article  Google Scholar 

  • Hu Z C, Gao S, Liu Y S, Hu S H, Chen H H, Yuan H L. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal Atom Spectrom, 23: 1093–1101

    Article  Google Scholar 

  • Hu Z C, Liu Y S, Chen L, Zhou L, Li M, Zong K Q, Zhu L Y, Gao S. 2011a. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. J Anal Atom Spectrom, 26: 425–430

    Article  Google Scholar 

  • Hu Z C, Liu Y S, Chen L, Zhou L A, Li M, Zong K Q, Zhu L Y, Gao S. 2011b. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. J Anal Atom Spectrom, 26: 425–430

    Article  Google Scholar 

  • Hu Z C, Liu Y S, Gao S, Xiao S Q, Zhao L S, Günther D, Li M, Zhang W, Zong K Q. 2012. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochim Acta B, 78: 50–57

    Article  Google Scholar 

  • Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 211: 47–69

    Article  Google Scholar 

  • Janeczek J, Ewing R C. 1992. Structural formula of uraninite. J Nucl Mater, 190: 128–132

    Article  Google Scholar 

  • Kimura J J, Chang Q, Tani K. 2011. Optimization of ablation protocol for 200 nm UV femtosecond laser in precise U-Pb age dating coupled to multi-collector ICP mass spectrometry. Geochem J, 45: 283–296

    Article  Google Scholar 

  • Košler J, Wiedenbeck M, Wirth R, Hovorka J, Sylvester P, Míková J. 2005. Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon-implications for elemental fractionation during ICP-MS analysis. J Anal Atom Spectrom, 20: 402–409

    Article  Google Scholar 

  • Kuhn B K, Birbaum K, Luo Y, Günther D. 2010. Fundamental studies on the ablation behaviour of Pb/U in NIST 610 and zirco. 9150. using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology. J Anal Atom Spectrom, 25: 21–27

    Article  Google Scholar 

  • Kuhn H R, Guillong M, Günther D. 2004. Size-related vaporisation and ionisation of laser-induced glass particles in the inductively coupled plasma. Anal Bioanal Chem, 378: 1069–1074

    Article  Google Scholar 

  • Kuhn H R, Günther D. 2004. Laser ablation-ICP-MS: particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass. J Anal Atom Spectrom, 19: 1158–1164

    Article  Google Scholar 

  • Lach P, Mercadier J, Dubessy J, Boiron M C, Cuney M. 2013. In situ quantitative measurement of rare earth elements in uranium oxides by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res, 37: 277–296

    Article  Google Scholar 

  • Li X H, Liu Y, Li Q L, Hua G C, Chamberlain K R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophy Geosy, 10: Q04010, doi: 10.1029/2009GC002400

  • Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol, 51: 537–571

    Article  Google Scholar 

  • Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257: 34–43

    Article  Google Scholar 

  • Liu Y S, Hu Z C, Li M, Gao S. 2013. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chin Sci Bull, 58: 3863–3878

    Article  Google Scholar 

  • Longerich H P, Günther D, Jackson S E. 1996. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius. J Anal Chem, 355: 538–542

    Google Scholar 

  • Ludwig K R, Grauch R I, Nutt C J, Nash J T, Frishman D, Simmons K R. 1987. Age of uranium mineralization at the Jabiluka and Ranger deposits, Northern Territory, Australia: New U-Pb isotope evidence. Econ Geol, 82: 857–874

    Article  Google Scholar 

  • Míková J, Košler J, Longerich H P, Wiedenbeck M, Hanchar J M. 2009. Fractionation of alkali elements during laser ablation ICP-MS analysis of silicate geological samples. J Anal Atom Spectrom, 24: 1244–1252

    Article  Google Scholar 

  • Müller W. 2003. Strengthening the link between geochronology, textures and petrology. Earth Planet Sci Lett, 206: 237–251

    Article  Google Scholar 

  • McDonough W F, Sun S S. 1995. The composition of the Earth. Chem Geol, 120: 223–253

    Article  Google Scholar 

  • Nasdala L, Hofmeister W, Norberg N, Mattinson J M, Corfu F, Dörr W, Kamo S L, Kennedy A K, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y S, Götze J, Häger T, Kröner A, Valley J W. 2008. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand Geoanal Res, 32: 247–265

    Article  Google Scholar 

  • Pearson N J, O’Reilly S Y, Griffin W L, Alard O, Belousova E, Anonymous. 2006. Linking crustal and mantle events using in situ trace-element and isotope analysis. Geochim Cosmochim Acta, 70: A479

    Article  Google Scholar 

  • Poitrasson F, Mao X, Mao S S, Freydier R, Russo R E. 2003. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon. Anal Chem, 75: 6184–6190

    Article  Google Scholar 

  • Reed S J B. 1990. Recent developments in geochemical microanalysis. Chem Geol, 83: 1–9

    Article  Google Scholar 

  • Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol, 184: 123–138

    Article  Google Scholar 

  • Shaheen M E, Gagnon J E, Fryer B J. 2012. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences. Chem Geol, 330–331: 260–273

    Article  Google Scholar 

  • Sun J F, Yang J H, Wu F Y, Xie L W, Yang Y H, Liu Z C, Li X H. 2012. In situ U-Pb dating of titanite by LA-ICPM S. Chin Sci Bull, 57: 2506–2516

    Article  Google Scholar 

  • Sylvester P J. 2008. Martix effects in laser ablation ICP-M S. In: Sylvester P J, ed. Ablation-ICP-MS in the Earth Sciences. Vancouver: Mineralogical Association of Canada Press. 67–78

    Google Scholar 

  • Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J P, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli P M, Rhede D, Satoh H, Schulz-Dobrick B, Skar O, Spicuzza M J, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y F. 2004. Further characterisation of th. 9150. zircon crystal. Geostand Geoanal Res, 28: 9–39

    Article  Google Scholar 

  • Zhao B Y, Li X B, Ying J L, Li J Y, Xu Z Y, Hou Y X. 1995. Certified Reference Material for U-Pb Isotopic Dating (pitchblende) (in Chinese). Beijing: Beijing Research Institute of Uranium Geology

    Google Scholar 

  • Zong K Q, Liu Y S, Gao C G, Hu Z H, Gao S, Gong H J. 2010. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: Refining constraints on the UHP metamorphism of the Sulu terrane, China. Chem Geol, 269: 237–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeQing Zong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, K., Chen, J., Hu, Z. et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS. Sci. China Earth Sci. 58, 1731–1740 (2015). https://doi.org/10.1007/s11430-015-5154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5154-y

Keywords

Navigation