Skip to main content
Log in

SH-wavefield simulation for a laterally heterogeneous whole-Earth model using the pseudospectral method

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical coordinates and the model is taken through a great circle of the Earth. Spatial derivatives in the wave equations are calculated in the wavenumber domain by multiplication, and the transformation between spatial and wavenumber domains is performed via fast Fourier transformation. Because of the high accuracy and high speed of the Fourier pseudospectral method, the scheme enables us to calculate a short-wavelength global SH-wavefield with accurate waveforms and arrival times for models with heterogeneities that can be approximated as azimuthally symmetric. Comparing with two-dimensional simulation methods based on an axisymmetric model, implementing the seismic source in the present scheme is more convenient. We calculated the global SH-wavefield for the preliminary reference Earth model to identify the generation, reflection and refraction of various seismic phases propagating in the Earth. Applications to a heterogeneous global model with low-velocity perturbation above the core-mantle boundary were conducted to analyze the effect of lateral heterogeneity on global SH-wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He Y M, Wen L X, Zheng T Y. Geographic boundary and shear wave velocity structure of the “Pacific anomaly” near the core-mantle boundary beneath western Pacific. Earth Planet Sci Lett, 2006, 244: 302–314

    Article  Google Scholar 

  2. Ni S D, Helmberger D V, Tromp J. Three-dimensional structure of the African superplume from waveform modeling. Geophys J Int, 2005, 161, doi: 10.1111/j.1365-246X.2005.02508.x

  3. Wang Y, Wen L X, Weidner D, et al. SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia. J Geophys Res, 2006, 111: B07305, doi: 10.1029/2005JB003849

    Article  Google Scholar 

  4. Wang T, Chen L. Distinct velocity variations around the base of the upper mantle beneath northeast Asia. Phys Earth Planet Inter, 2009, 172, doi: 10.1016/j.pepi.2008.09.021

  5. Zhang R Q, Wu Q J, Li Y H, et al. Upper mantle SH velocity structure beneath Qiangtang Terrane by modeling triplicated phases. Chinese Sci Bull, 2008, 53: 3211–3218

    Article  Google Scholar 

  6. Cummins P R, Takeuchi N, Geller R J. Computation of complete synthetic seismograms for laterally heterogeneous models using the Direct Solution Method. Geophys J Int, 1997, 130: 1–16

    Article  Google Scholar 

  7. Takeuchi N, Geller R J, Cummins P R. Complete synthetic seismograms for 3-D heterogeneous Earth models computed using modified DSM operators and their applicability to inversion for Earth structure. Phys Earth Planet Inter, 2000, 119: 25–36

    Article  Google Scholar 

  8. Komatitsch D, Tromp J. Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys J Int, 2002, 149: 390–412

    Article  Google Scholar 

  9. Komatitsch D, Tromp J. Spectral-element simulations of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and self-gravitation. Geophys J Int, 2002, 150: 303–318

    Article  Google Scholar 

  10. Yan Z Z, Zhang H, Yang C C, et al. Spectral element analysis on the characteristics of seismic wave propagation triggered by Wenchuan M s8.0 earthquake. Sci China Ser D-Earth Sci, 2009, 52: 764–773

    Article  Google Scholar 

  11. Igel H, Weber M. SH-wave propagation in the whole mantle using high-order finite differences. Geophys Res Lett, 1995, 22: 731–734

    Article  Google Scholar 

  12. Igel H, Weber M. P-SV wave propagation in the Earth’s mantle using finite differences: Application to heterogeneous lowermost mantle structure. Geophys Res Lett, 1996, 23: 415–418

    Article  Google Scholar 

  13. Igel H, Gudmundsson O. Frequency-dependent effects on travel times and waveforms of long-period S and SS waves. Phys Earth planet Inter, 1997, 104: 229–246

    Article  Google Scholar 

  14. Nissen-Meyer T, Fournier A, Dahlen F A. A 2-D spectral-element method for computing spherical-earth seismograms-I. Moment-tensor source. Geophys J Int, 2007, 168: 1067–1093

    Article  Google Scholar 

  15. Thorne M S, Lay T, Garnero E J, et al. Seismic imaging of the laterally varying D” region beneath the Cocos Plate. Geophys J Int, 2007, 170: 635–648

    Article  Google Scholar 

  16. Jahnke G, Thorne M S, Cochard A, et al. Global SH-wave propagation using a parallel axisymmetric spherical finite-difference scheme: application to whole mantle scattering. Geophys J Int, 2008, 173: 815–826

    Article  Google Scholar 

  17. Toyokuni G, Takenaka H, Wang Y, et al. Quasispherical approach for seismic wave modeling in a 2D slice of a global Earth model with lateral heterogeneity. Geophys Res Lett, 2005, 32, doi: 10.1029/2004GL022180

  18. Toyokuni G, Takenaka H. FDM computation of seismic wavefield for an axisymmetric earth with a moment tensor point source. Earth Planets Space, 2006, 58: e29–e32

    Google Scholar 

  19. Fornberg B. The pseudospectral method: comparisons with finite-differences for the elastic wave equations. Geophysics, 1987, 52: 483–501

    Article  Google Scholar 

  20. Furumura T, Kennett B L N, Furumura M. Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method. Geophys J Int, 1998, 135: 845–860

    Article  Google Scholar 

  21. Wang Y B, Takenaka H, Furumura T. Modelling seismic wave propagation in a two-dimensional cylindrical whole-earth model using the pseudospectral method. Geophys J Int, 2001, 145: 689–708

    Article  Google Scholar 

  22. Kosloff D, Reshef M, Loewenthal D. Elastic wave calculation by the Fourier method. Bull Seismol Soc Amer, 1984, 74: 875–891

    Google Scholar 

  23. Fornberg B. The pseudospectral method: accurate representation of interfaces for elastic wave calculations. Geophysics, 1988, 53: 625–637

    Article  Google Scholar 

  24. Herrmann R B. SH-wave generation by dislocation source-A numerical study. Bull Seismol Soc Amer, 1979, 69: 1–15

    Google Scholar 

  25. Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 1985, 50: 705–708

    Article  Google Scholar 

  26. Daudt C R, Braile L W, Nowack R L, et al. A comparison of finite-difference and Fourier method calculations of synthetic seismograms. Bull Seismol Soc Amer, 1989, 79: 1210–1230

    Google Scholar 

  27. Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull Seismol Soc Amer, 1996, 86: 1091–1106

    Google Scholar 

  28. Dziewonski A M, Anderson D L. Preliminary reference earth model. Phys Earth Planet Inter, 1981, 25: 297–356

    Article  Google Scholar 

  29. Helmberger D V, Vidale J E. Modeling strong motions produced by earthquakes with two-dimensional numerical codes. Bull Seismol Soc Amer, 1988, 78: 109–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanBin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Takenaka, H. SH-wavefield simulation for a laterally heterogeneous whole-Earth model using the pseudospectral method. Sci. China Earth Sci. 54, 1940–1947 (2011). https://doi.org/10.1007/s11430-011-4244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4244-8

Keywords

Navigation