Skip to main content
Log in

Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The high spatial resolution and temporal observation frequency of HJ-1/CCD make it suitable for aerosol monitoring. However, because of the lack of a shortwave infrared band, it is difficult to use HJ-1/CCD imagery to retrieve aerosol optical depth (AOD). We developed a new algorithm for HJ-1/CCD AOD retrieval by introducing MODIS surface reflectance outputs (MOD09) as support. In this algorithm HJ-1/CCD blue band surface reflectance was retrieved through MOD09 blue band surface reflectance by band matching of the two sensors. AOD at 550 nm was then generated through a pre-calculated look-up table for HJ-1/CCD. Eighteen HJ-1/CCD images covering the Jing-Jin-Tang (Beijing-Tianjin-Tangshan) region were used to retrieve AOD using the new algorithm, and the AODs were then validated using AERONET ground measurements in Beijing and Xianghe. The validation shows that compared with AERONET ground measurements, 27/29 AODs have error less than 0.1 in absolute value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sokolik I N, Toon O B. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 1996, 381: 681–683

    Article  Google Scholar 

  2. Jason D S, Michael L, John H O, et al. Effect of acidity on secondary organic aerosol formation from isoprene. Environ Sci Technol, 2007, 41: 5363–5369

    Article  Google Scholar 

  3. Kokhanovsky A A, Breon F M, Cacciari A, et al. Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmos Research, 2007, 85: 372–394

    Article  Google Scholar 

  4. Kaufman Y J, Wald A E, Remer L A, et al. The MODIS 2.1-μm channel—Correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans Geosci Remote Sensing, 1997, 35: 1286–1298

    Article  Google Scholar 

  5. Kaufman Y J, Remer L. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans Geosci Remote Sensing, 1994, 32: 672–683

    Article  Google Scholar 

  6. Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res, 2007, doi: 10.1029/2006JD007811

  7. Kaufman Y J, Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int J Remote Sens, 1988, 9: 1357–1381

    Article  Google Scholar 

  8. King M D, Kaufman Y J, Tanre D, et al. Remote sensing of troposphere aerosol from space: Past, present, and future. Bull Amer Meteorol Soc, 1999, 80: 2229–2259

    Article  Google Scholar 

  9. Remer L A, Kaufman Y J, Tanre D, et al. The MODIS aerosol algorithm, products, and validation. J Atmos Sci, 2005, 62(Spec): 947–973

    Article  Google Scholar 

  10. Remer L A, Tanre D, Kaufman Y J. MODIS ATBD: Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection5. Product ID: MOD04/MYD04-C005, 2006. 3–20

  11. Wang Z T, Chen L F, Gong H, et al. Modified DDV method of aerosol optical depth inversion over land surfaces from CBERS02B. J Remote Sens, 2009, 13: 1053–1066

    Google Scholar 

  12. Wang Z T, Li Q, Tao J H, et al. Monitoring of aerosol optical depth over land surface using CCD camera on HJ-1 satellite. China Environ Sci, 2009, 29: 902–907

    Google Scholar 

  13. Hsu C N, Tsay S C, King M D, et al. Aerosol properties over bright-reflecting. IEEE Trans Geosci Remote Sensing, 2004, 42: 557–569

    Article  Google Scholar 

  14. Sun L, Zhong B, Liu Q H, et al. Remote sensing retrieval of aerosol optical thickness in sparsely vegetated areas. Chin High Technol Lett, 2007, 17: 512–517

    Google Scholar 

  15. Tanré D, Deschamps P Y, Devaux C, et al. Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data. J Geophys Res, 1988, 93: 15955–15964

    Article  Google Scholar 

  16. Holben B N, Vermote E, Kaufman Y J, et al. Aerosol retrieval over land from AVHRR data: Application for atmospheric correction. IEEE Trans Geosci Remote Sensing, 1992, 30: 212–222

    Article  Google Scholar 

  17. Sun L, Liu Q H, Chen L F, et al. The application of HJ-1 Hyperspectral imaging radiometer to retrieve aerosol optical thickness over Land. J Remote Sens, 2006, 10: 770–776

    Google Scholar 

  18. Vermote E F, Roger J C, Sinyuk A. Fusion of MODIS-MISR aerosol inversion for estimation of aerosol absorption. Remote Sens Environ, 2007, 107: 81–89

    Article  Google Scholar 

  19. Tang J K, Xue Y, Yu T, et al. Aerosol retrieval over land by exploiting the synergy of Terra and Aqua MODIS data. Sci China Ser D-Earth Sci, 2006, 49: 641–649

    Article  Google Scholar 

  20. Vermote E F, Vermeulen A. MODIS ATBD: Atmospheric Correction Algorithm: Spectral reflectances (MOD09) Version 4.0, 1999

  21. Vermote E F, Kotchenova S Y. MOD09 (Surface Reflectance) User’s Guide Version 1.1, 2008

  22. King M D, Kaufman Y J, Menzel W P, et al. Remote sensing of cloud, aerosol, and water vapor properties from the Moderate resolution imaging spectrometer (MODIS). IEEE Trans Geosci Remote Sensing, 1992, 30: 2–27

    Article  Google Scholar 

  23. Salomonson V V, Barnes W L, Maymon P W, et al. MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans Geosci Remote Sensing, 1989, 27: 145–153

    Article  Google Scholar 

  24. Baldridge A M, Hook S J, Grove C I, et al. The ASTER spectral library version 2.0. Remote Sens Environ, 2009, 113: 711–715

    Article  Google Scholar 

  25. Vermote E, Tanre D, Deuze J L, et al. Second simulation of a satellite signal in the solar spectrum-Vector (6SV). 6S User Guide Vevsion 3, 2006

  26. Holben B N, Tanre D, Smirnov A, et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J Geophys Res, 2001, 106: 12067–12097

    Article  Google Scholar 

  27. Holben B N, Vermote E, Kaufman Y J, et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 1998, 66: 1–16

    Article  Google Scholar 

  28. Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res, 2000, 105: 20673–20696

    Article  Google Scholar 

  29. Li Z Q, Niu F, Lee K H, et al. Validation and understanding of Moderate resolution imaging spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J Geophys Res, 2007, doi: 10.1029/2007JD008479

  30. Zhou C Y. A study of algorithms to retrieve high-resolution aerosol optical thickness distribution based on HJ-1 satellite images in Beijing area. Doctoral Dissertation. Beijing: Graduate University of Chinese Academy of Sciences, 2009. 1–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QinHuo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Sun, C., Liu, Q. et al. Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data. Sci. China Earth Sci. 53 (Suppl 1), 74–80 (2010). https://doi.org/10.1007/s11430-010-4134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4134-5

Keywords

Navigation