Skip to main content
Log in

A Diabetes Outcome and Progression Trial – Die ADOPT Studie

Mögliche Auswirkungen auf die praktische Therapie des Typ-2-Diabetes mellitus

A Diabetes Outcome Progression Trial – the ADOPT Study

Possible implications for practical treatment of type 2 diabetes mellitus

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Ziel der ADOPT-Studie war es, in einem randomisierten, prospektiven und verblindeten Studiendesign die Auswirkungen verschiedener medikamentöser Monotherapien auf die Progression des Typ-2-Diabetes zu erfassen. Verglichen wurden die Insulinresistenztherapie mit Rosiglitazon, die insulinotrope Therapie mit einem Sulfonylharnstoff (Glibenclamid) und die endogene blutzuckersenkende Therapie mit einem Biguanid (Metformin). Die Studie wurde mit 4360 bis dahin ohne Medikamente behandelten Patienten durchgeführt. Der Endpunkt nach einer medianen Beobachtungsdauer von 4 Jahren war das Versagen der Monotherapie. Andere Beobachtungsparameter waren Parameter des Glukosestoffwechsels, der Insulinsensitivität und der β-Zell-Funktion. Obwohl die Aussagekraft der ADOPT-Studie durch eine hohe Drop-out-Rate beeinträchtigt wird, können folgende Schlussfolgerungen gezogen werden: Unter pathophysiologischen Gesichtspunkten war Rosiglitazon dem Sulfonylharnstoff in der Monotherapie überlegen, und es war moderat besser als Metformin. Glibenclamid führte zum Anstieg des Körpergewichts und zu mehr Hypoglykämien. Metformin-behandelte Patienten hatten mehr gastrointestinale Nebenwirkungen, und die Rosiglitazon-Gruppe zeigte mehr Ödeme und Gewichtsanstieg. Als auffällige Sicherheitsergebnisse wurden eine erhöhte Frakturrate bei Rosiglitazon-behandelten Frauen und eine erniedrigte Rate an kardiovaskulären Ereignissen unter dem Sulfonylharnstoff beschrieben.

Abstract

The goal of the ADOPT Study, designed as a randomized, prospective, double-blind trial, was to evaluate the effects of different monotherapies on the progression of type 2 diabetes. A comparison was made between insulin resistance treatment with rosiglitazone, insulinotropic therapy with a sulfonylurea (glyburide), and endogenous therapy with a biguanide antihyperglycemic agent (metformin). The study was performed with 4,360 drug-naive patients. The end point after a median observational period of 4 years was monotherapy failure. Other outcome parameters were glucose metabolism, insulin sensitivity, and cell function. Although the explanatory power of ADOPT is limited by a high dropout rate, the following conclusions can be drawn: from pathophysiological viewpoints, rosiglitazone was superior to sulfonylurea as monotherapy and was moderately better than metformin. Glyburide led to an increase in body weight and more cases of hypoglycemia. Patients treated with metformin experienced more gastrointestinal side effects and the rosiglitazone group exhibited more edema and weight gain. Conspicuous results of safety monitoring were an elevated fracture rate in women treated with rosiglitazone and a diminished rate of cardiovascular events under sulfonylurea treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Häring HU, Joost HG, Laube H et al. (2003) Evidenzbasierte Leitlinie – Antihyperglykämische Therapie des Typ 2 Diabetes mellitus. In: Deutsche Diabetes Gesellschaft, Schwerbaum W, Landgraf R (Hrsg) Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften Reg.Nr. 057/012. http://www.uni-duesseldorf.de/awmf/II/II_057.htm

  2. Galloway JA, Hooper SA, Spradlin CT et al. (1992) Biosynthetic human proinsulin. Review of chemistry, in vitro and in vivo receptor binding, animal and human pharmacology studies, and clinical trial experience. Diabetes Care 15: 666–692

    Article  PubMed  Google Scholar 

  3. Pfützner A, Forst T (2004) Intaktes Proinsulin als kardiovaskulärer Risikomarker und prädiktiver diagnostischer Marker für die Insulinresistenz bei Patienten mit Typ 2 Diabetes. Diab Stoffw 14: 193–200

    Google Scholar 

  4. Smith SA (2003) Central role of the adipocyte in the insulin-sensitising and cardiovascular risk modifying actions of the thiazolidinediones. Biochimie 85: 1219–1230

    Article  PubMed  Google Scholar 

  5. Feher T, Bodrogi L, Vallent K, Ribai Z (1982) Role of human adipose tissue in the production and metabolism of steroid hormones. Endokrinologie 80: 173–180

    PubMed  Google Scholar 

  6. VanGaal LF, Mertens IL, DeBlock CE (2006) Mechansims linking obesity with cardiovascular disease. Nature 444: 875–880

    Article  PubMed  Google Scholar 

  7. Trujillo ME, Scherer PE (2005) Adiponectin – journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med 257: 167–175

    Article  PubMed  Google Scholar 

  8. Schöndorf T, Maiworm A, Emission N et al. (2005) Biological background and role of adiponectin as marker for insulin resistance and cardiovascular risk. Clin Lab 51: 489–494

    PubMed  Google Scholar 

  9. Boyle JJ (2005) Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol 3: 63–68

    Article  PubMed  Google Scholar 

  10. Zeng G, Nystrom FH, Ravichandran LV et al. (2000) Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101: 1539–1545

    PubMed  Google Scholar 

  11. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators Gerstein HC, Yusuf S et al. (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368: 1096–1105; Erratum in: Lancet 368: 1770

  12. Chiasson JL, Josse RG, Gomis R et al. (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomized trial. Lancet 359: 2072–2077

    Article  PubMed  Google Scholar 

  13. Irons BK, Greene RS, Mazzolini TA et al. (2006) Implications of rosiglitazone and pioglitazone on cardiovascular risk in patients with type 2 diabetes mellitus. Pharmacotherapy 26: 168–181

    Article  PubMed  Google Scholar 

  14. Pfützner A, Schneider CA, Forst T (2006) Pioglitazone: an antidiabetic drug with cardiovascular therapeutic effects. Expert Rev Cardiovasc Ther 4: 445–459

    Article  PubMed  Google Scholar 

  15. Viberti G, Kahn SE, Greene DA et al. (2002) A diabetes outcome progression trial (ADOPT): an international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes. Diabetes Care 25: 1737–1743

    PubMed  Google Scholar 

  16. Kahn SE, Haffner SM, Heise MA et al. (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355: 2427–2443

    Article  PubMed  Google Scholar 

  17. Viberti G, Lachin J, Holman R et al. (2006) A Diabetes Outcome Progression Trial (ADOPT): baseline characteristics of type 2 diabetic patients in North America and Europe. Diabet Med 23: 1289–1294

    Article  PubMed  Google Scholar 

  18. Wallace TM, Levy JC, Matthews DR (2004) Use and absuse of HOMA modeling. Diabetes Care 27: 1487–1495

    Article  PubMed  Google Scholar 

  19. Nordt TK, Bode C, Sobel BE (2001) Stimulation in vivo of expression of intra-abdominal adipose tissue plasminogen activator inhibitor Type I by proinsulin. Diabetologia 44: 1121–1124

    Article  PubMed  Google Scholar 

  20. Lecka-Czernik B, Gubrij I, Moerman EJ et al. (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem 74: 357–371

    Article  PubMed  Google Scholar 

  21. Rzonca SO, Suva LJ, Gaddy D et al. (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145: 401–406

    Article  PubMed  Google Scholar 

  22. Lecka-Czernik B, Moerman EJ, Grant DF et al. (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143: 2376–2384

    Article  PubMed  Google Scholar 

  23. Schwartz AV, Sellmeyer DE, Vittinghoff E et al. (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91: 3349–3354

    Article  PubMed  Google Scholar 

  24. Lazarenko OP, Rzonca SO, Hogue WR et al. (in press) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148 (Epub ahead of print)

  25. Lecka-Czernik B, Suva LJ (in press) Resolving the two „bony“ faces of PPAR-gamma. PPAR Res 27489 (Epub ahead of print)

  26. Dachverband Osteologie (2006) Evidenzbasierte Konsensusleitlinien zur Diagnostik, Prophylaxe und Therapie der Osteoporose bei Frauen ab der Menopause und Männern ab dem 60. Lebensjahr (http://www.lutherhaus.de/dvo-leitlinien)

  27. Hauner H (2006) Die Kosten des Diabetes mellitus und seiner Komplikationen in Deutschland. Dtsch Med Wochenschr [Suppl 8] 131: S240–S242

Download references

Interessenkonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pfützner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfützner, A., Forst, T. A Diabetes Outcome and Progression Trial – Die ADOPT Studie. Diabetologe 3, 261–269 (2007). https://doi.org/10.1007/s11428-007-0138-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-007-0138-y

Schlüsselwörter

Keywords

Navigation