Skip to main content
Log in

Climate change filtered out resource-acquisitive plants in a temperate grassland in Inner Mongolia, China

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Global climate change has led to the decline of species and functional diversity in ecosystems, changing community composition and ecosystem functions. However, we still know little about how species with different resource-use strategies (different types of resource usage and plant growth of plants as indicated by the spectrum of plant economic traits, including acquisitive resource-use strategy and conservative resource-use strategy) would change in response to climate change, and how the changes in the diversity of species with different resource-use strategies may influence community-level productivity. Here, using long-term (1982–2017) observatory data in a temperate grassland in Inner Mongolia, we investigated how climate change had affected the species richness (SR) and functional richness (FRic) for the whole community and for species with different resource-use strategies. Specifically, based on data for four traits representing leaf economics spectrum (leaf carbon concentration, leaf nitrogen concentration, leaf phosphorus concentration, and specific leaf area), we divided 81 plant species appearing in the grassland community into three plant functional types representing resource-acquisitive, medium, and resource-conservative species. We then analyzed the changes in community-level productivity in response to the decline of SR and FRic at the community level and for different resource-use strategies. We found that community-level SR and FRic decreased with drying climate, which was largely driven by the decline of diversity for resource-acquisitive species. However, community-level productivity remained stable because resource-conservative species dominating this grassland were barely affected by climate change. Our study revealed distinctive responses of species with different resource-use strategies to climate change and provided a new approach based on species functional traits for predicting the magnitude and direction of climate change effects on ecosystem functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, P.B., and Levine, J.M. (2007). Contrasting relationships between precipitation and species richness in space and time. Oikos 116, 221–232.

    Article  ADS  Google Scholar 

  • Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Blüthgen, N., Böhm, S., Grassein, F., Hölzel, N., Klaus, V.H., et al. (2015). Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18, 834–843.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayma-Romay, A.I., and Bown, H.E. (2019). Biomass and dominance of conservative species drive above-ground biomass productivity in a mediterranean-type forest of Chile. For Ecosyst 6, 47.

    Article  Google Scholar 

  • Bacon, M. (2009). Water Use Efficiency in Plant Biology. Hoboken: John Wiley & Sons.

    Google Scholar 

  • Bai, X., Zhao, W., Wang, J., and Ferreira, C.S.S. (2021). Precipitation drives the floristic composition and diversity of temperate grasslands in China. Glob Ecol Conserv 32, e01933.

    Google Scholar 

  • Baltzer, J.L., Davies, S.J., Bunyavejchewin, S., and Noor, N.S.M. (2008). The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Funct Ecol 22, 221–231.

    Article  Google Scholar 

  • Balvanera, P., Pfisterer, A.B., Buchmann, N., He, J.S., Nakashizuka, T., Raffaelli, D., and Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9, 1146–1156.

    Article  PubMed  Google Scholar 

  • Beguería, S., Vicente-Serrano, S.M., Reig, F., and Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34, 3001–3023.

    Article  Google Scholar 

  • Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Rüger, N., Beck, P.S.A., Blach-Overgaard, A., Blok, D., Cornelissen, J.H.C., Forbes, B.C., et al. (2018). Plant functional trait change across a warming tundra biome. Nature 562, 57–62.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Breheny, P., and Burchett, W. (2017). Visualization of regression models using visreg. R J 9, 56–71.

    Article  Google Scholar 

  • Cantarel, A.A.M., Bloor, J.M.G., and Soussana, J.F. (2013). Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem. J Veg Sci 24, 113–126.

    Article  Google Scholar 

  • Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., et al. (2012). Biodiversity loss and its impact on humanity. Nature 486, 59–67.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cardinale, B.J., Matulich, K.L., Hooper, D.U., Byrnes, J.E., Duffy, E., Gamfeldt, L., Balvanera, P., O’Connor, M.I., and Gonzalez, A. (2011). The functional role of producer diversity in ecosystems. Am J Bot 98, 572–592.

    Article  PubMed  Google Scholar 

  • Cardinale, B.J., Srivastava, D.S., Emmett Duffy, J., Wright, J.P., Downing, A.L., Sankaran, M., and Jouseau, C. (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cardinale, B.J., Wright, J.P., Cadotte, M.W., Carroll, I.T., Hector, A., Srivastava, D.S., Loreau, M., and Weis, J.J. (2007). Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 104, 18123–18128.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Carmona, C.P., Tamme, R., Pärtel, M., de Bello, F., Brosse, S., Capdevila, P., González M. R., González-Suárez, M., Salguero-Gómez, R., Vásquez-Valderrama, M., et al. (2021). Erosion of global functional diversity across the tree of life. Sci Adv 7, eabf2675.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Chapin, F. S., and Díaz, S. (2020). Interactions between changing climate and biodiversity: shaping humanity’s future. Proc Natl Acad Sci USA 117, 6295–6296.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Chapin, F.S., Bret-Harte, M.S., Hobbie, S.E., and Zhong, H. (1996). Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7, 347–358.

    Article  Google Scholar 

  • Cleland, E.E., Collins, S.L., Dickson, T.L., Farrer, E.C., Gross, K.L., Gherardi, L.A., Hallett, L.M., Hobbs, R.J., Hsu, J.S., Turnbull, L., et al. (2013). Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696.

    Article  PubMed  Google Scholar 

  • Craine, J.M., Ocheltree, T.W., Nippert, J.B., Towne, E.G., Skibbe, A.M., Kembel, S.W., and Fargione, J.E. (2013). Global diversity of drought tolerance and grassland climate-change resilience. Nat Clim Change 3, 63–67.

    Article  ADS  Google Scholar 

  • De Boeck, H.J., Dreesen, F.E., Janssens, I.A., and Nijs, I. (2011). Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol 189, 806–817.

    Article  PubMed  Google Scholar 

  • de Vries, F.T., Bloem, J., Quirk, H., Stevens, C.J., Bol, R., and Bardgett, R. D. (2012). Extensive management promotes plant and microbial nitrogen retention in temperate grassland. PLoS ONE 7, e51201.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Diaz, S., Cabido, M., and Casanoves, F. (1998). Plant functional traits and environmental filters at a regional scale. J Veg Sci 9, 113–122.

    Article  Google Scholar 

  • Eskelinen, A., Harpole, W.S., Jessen, M.T., Virtanen, R., and Hautier, Y. (2022). Light competition drives herbivore and nutrient effects on plant diversity. Nature 611, 301–305.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Fatichi, S., Pappas, C., and Ivanov, V.Y. (2016). Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale. WIREs Water 3, 327–368.

    Article  Google Scholar 

  • Gao, C., Kim, Y.C., Zheng, Y., Yang, W., Chen, L., Ji, N.N., Wan, S.Q., and Guo, L.D. (2016). Increased precipitation, rather than warming, exerts a strong influence on arbuscular mycorrhizal fungal community in a semiarid steppe ecosystem. Botany 94, 459–469.

    Article  Google Scholar 

  • Geng, Y., Ma, W., Wang, L., Baumann, F., Kühn, P., Scholten, T., and He, J. S. (2017). Linking above- and belowground traits to soil and climate variables: an integrated database on China’s grassland species. Ecology 98, 1471.

    Article  PubMed  Google Scholar 

  • Grime, J.P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86, 902–910.

    Article  Google Scholar 

  • Habibullah, M.S., Din, B.H., Tan, S.H., and Zahid, H. (2022). Impact of climate change on biodiversity loss: global evidence. Environ Sci Pollut Res 29, 1073–1086.

    Article  Google Scholar 

  • Harrison, S.P., Gornish, E.S., and Copeland, S. (2015). Climate-driven diversity loss in a grassland community. Proc Natl Acad Sci USA 112, 8672–8677.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Harrison, S., Spasojevic, M.J., and Li, D. (2020). Climate and plant community diversity in space and time. Proc Natl Acad Sci USA 117, 4464–4470.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M.C., Diemer, M., Dimitrakopoulos, P.G., Finn, J.A., Freitas, H., Giller, P.S., Good, J., et al. (1999). Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127.

    Article  CAS  PubMed  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J.M., and Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34, 807–816.

    Article  CAS  Google Scholar 

  • Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich, K.L., Gonzalez, A., Duffy, J.E., Gamfeldt, L., and O’Connor, M.I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hu, Q., Pan, F., Pan, X., Zhang, D., Li, Q., Pan, Z., and Wei, Y. (2015). Spatial analysis of climate change in Inner Mongolia during 1961–2012, China. Appl Geogr 60, 254–260.

    Article  Google Scholar 

  • Huber, E., Wanek, W., Gottfried, M., Pauli, H., Schweiger, P., Arndt, S.K., Reiter, K., and Richter, A. (2007). Shift in soil-plant nitrogen dynamics of an alpine-nival ecotone. Plant Soil 301, 65–76.

    Article  CAS  Google Scholar 

  • Illuminati, A., Querejeta, J.I., Pías, B., Escudero, A., and Matesanz, S. (2022). Coordination between water uptake depth and the leaf economic spectrum in a Mediterranean shrubland. J Ecol 110, 1844–1856.

    Article  CAS  Google Scholar 

  • Jansa, J., Mozafar, A., and Frossard, E. (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23, 481–488.

    Article  CAS  Google Scholar 

  • Kardol, P., Campany, C.E., Souza, L., Norby, R.J., Weltzin, J.F., and Classen, A.T. (2010). Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob Change Biol 16, 2676–2687.

    Article  ADS  Google Scholar 

  • Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol 28, 1313–1320.

    Article  Google Scholar 

  • Lavorel, S., McIntyre, S., Landsberg, J., and Forbes, T.D.A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12, 474–478.

    Article  CAS  PubMed  Google Scholar 

  • Lebrija-Trejos, E., Pérez-García, E.A., Meave, J.A., Bongers, F., and Poorter, L. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91, 386–398.

    Article  PubMed  Google Scholar 

  • Legras, G., Loiseau, N., and Gaertner, J.C. (2018). Functional richness: Overview of indices and underlying concepts. Acta Oecol 87, 34–44.

    Article  ADS  Google Scholar 

  • Li, H., Liu, B., McCormack, M.L., Ma, Z., and Guo, D. (2017). Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytol 216, 1140–1150.

    Article  PubMed  Google Scholar 

  • Li, M., Zhang, X., Niu, B., He, Y., Wang, X., and Wu, J. (2020). Changes in plant species richness distribution in Tibetan alpine grasslands under different precipitation scenarios. Glob Ecol Conserv 21, e00848.

    Google Scholar 

  • Liu, D., Zhang, C., Ogaya, R., Fernández-Martínez, M., Pugh, T.A.M., and Peñuelas, J. (2021). Increasing climatic sensitivity of global grassland vegetation biomass and species diversity correlates with water availability. New Phytol 230, 1761–1771.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loranger, J., and Shipley, B. (2010). Interspecific covariation between stomatal density and other functional leaf traits in a local flora. Botany 88, 30–38.

    Article  Google Scholar 

  • Loreau, M., Naeem, S., and Inchausti, P. (2002). Biodiversity and Ecosystem Functioning: Synthesis and Perspectives. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Lozano, Y.M., Aguilar-Trigueros, C.A., Flaig, I.C., and Rillig, M.C. (2020). Root trait responses to drought are more heterogeneous than leaf trait responses. Funct Ecol 34, 2224–2235.

    Article  Google Scholar 

  • Luo, S., Schmid, B., Wagg, C., Chen, Y., Jiang, B., Liang, M., Liu, X., and Yu, S. (2020). Community-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810.

    Article  ADS  Google Scholar 

  • Lyons, K.G., Brigham, C.A., Traut, B.H., and Schwartz, M.W. (2005). Rare species and ecosystem functioning. Conserv Biol 19, 1019–1024.

    Article  Google Scholar 

  • Lyons, K.G., and Schwartz, M.W. (2001). Rare species loss alters ecosystem function–invasion resistance. Ecol Lett 4, 358–365.

    Article  Google Scholar 

  • Májeková, M., de Bello, F., Doležal, J., and Lepš, J. (2014). Plant functional traits as determinants of population stability. Ecology 95, 2369–2374.

    Article  Google Scholar 

  • Mason, C.M., Bowsher, A.W., Crowell, B.L., Celoy, R.M., Tsai, C., and Donovan, L.A. (2016). Macroevolution of leaf defenses and secondary metabolites across the genus Helianthus. New Phytol 209, 1720–1733.

    Article  CAS  PubMed  Google Scholar 

  • Mason, N.W.H., Mouillot, D., Lee, W.G., and Wilson, J.B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118.

    Article  ADS  Google Scholar 

  • Matos, I.S., Eller, C.B., Oliveras, I., Mantuano, D., and Rosado, B.H.P. (2021). Three eco-physiological strategies of response to drought maintain the form and function of a tropical montane grassland. J Ecol 109, 327–341.

    Article  Google Scholar 

  • Miller, J.E.D., Li, D., LaForgia, M., and Harrison, S. (2019). Functional diversity is a passenger but not driver of drought-related plant diversity losses in annual grasslands. J Ecol 107, 2033–2039.

    Article  Google Scholar 

  • Mokany, K., Ash, J., and Roxburgh, S. (2008). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96, 884–893.

    Article  Google Scholar 

  • Nielsen, S.L., Enriquez, S., Duarte, C.M., and Sand-Jensen, K. (1996). Scaling maximum growth rates across photosynthetic organisms. Funct Ecol 10, 167.

    Article  Google Scholar 

  • Olff, H., and Ritchie, M.E. (1998). Effects of herbivores on grassland plant diversity. Trends Ecol Evol 13, 261–265.

    Article  CAS  PubMed  Google Scholar 

  • Palacio, S., Montserrat-Martí, G., and Ferrio, J.P. (2017). Water use segregation among plants with contrasting root depth and distribution along gypsum hills. J Veg Sci 28, 1107–1117.

    Article  Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37, 637–669.

    Article  Google Scholar 

  • Peng, A., Klanderud, K., Wang, G., Zhang, L., Xiao, Y., and Yang, Y. (2020). Plant community responses to warming modified by soil moisture in the Tibetan Plateau. Arct Antarct Alp Res 52, 60–69.

    Article  ADS  Google Scholar 

  • Pérez-Ramos, I.M., Volaire, F., Fattet, M., Blanchard, A., and Roumet, C. (2013). Tradeoffs between functional strategies for resource-use and drought-survival in Mediterranean rangeland species. Environ Exp Bot 87, 126–136.

    Article  Google Scholar 

  • Polley, H.W., Isbell, F.I., and Wilsey, B.J. (2013). Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity. Oikos 122, 1275–1282.

    Article  ADS  Google Scholar 

  • Prado-Junior, J.A., Schiavini, I., Vale, V.S., Arantes, C.S., van der Sande, M.T., Lohbeck, M., and Poorter, L. (2016). Conservative species drive biomass productivity in tropical dry forests. J Ecol 104, 817–827.

    Article  Google Scholar 

  • Prieto, I., Querejeta, J.I., Segrestin, J., Volaire, F., and Roumet, C. (2018). Leaf carbon and oxygen isotopes are coordinated with the leaf economics spectrum in Mediterranean rangeland species. Funct Ecol 32, 612–625.

    Article  Google Scholar 

  • R Core Team. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available from URL: https://www.R-project.org/.

  • Read, Q.D., Moorhead, L.C, Swenson, N.G, Bailey, J.K, and Sanders, N.J. (2014). Convergent effects of elevation on functional leaf traits within and among species. Funct Ecol 28, 37–45.

    Article  Google Scholar 

  • Rees, M., Condit, R., Crawley, M., Pacala, S., and Tilman, D. (2001). Long-term studies of vegetation dynamics. Science 293, 650–655.

    Article  CAS  PubMed  Google Scholar 

  • Reich, P.B. (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. J Ecol 102, 275–301.

    Article  Google Scholar 

  • Reich, P.B., Ellsworth, D.S., and Walters, M.B. (1998). Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Funct Ecol 12, 948–958.

    Article  Google Scholar 

  • Reich, P.B., Uhl, C., Walters, M.B., and Ellsworth, D.S. (1991). Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree species. Oecologia 86, 16–24.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Reich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., and Walters, M.B. (2003). The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164, S143–S164.

    Article  Google Scholar 

  • Santiago, B., and Vicente-Serrano, S.M. (2017). SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index (R package version 1.7). Available from URL: https://CRAN.R-project.org/pack-age=SPEI.

  • Schrodt, F., Kattge, J., Shan, H., Fazayeli, F., Joswig, J., Banerjee, A., Reichstein, M., Bönisch, G., Díaz, S., Dickie, J., et al. (2015). BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob Ecol Biogeogr 24, 1510–1521.

    Article  Google Scholar 

  • Seyednasrollah, B., and Clark, J.S. (2020). Where resource-acquisitive species are located: the role of habitat heterogeneity. Geophys Res Lett 47, e87626.

    Article  ADS  Google Scholar 

  • Smith, M.D., and Knapp, A.K. (2003). Dominant species maintain ecosystem function with non-random species loss. Ecol Lett 6, 509–517.

    Article  Google Scholar 

  • Sundqvist, M.K., Giesler, R., and Wardle, D.A. (2011). Within- and across-species responses of plant traits and litter decomposition to elevation across contrasting vegetation types in subarctic tundra. PLoS ONE 6, e27056.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Theodose, T.A., Jaeger, C.H., Bowman, W.D., and Schardt, J.C. (1996). Uptake and allocation of 15 N in alpine plants: implications for the importance of competitive ability in predicting community structure in a stressful environment. Oikos 75, 59.

    Article  ADS  Google Scholar 

  • Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T., and Prentice, I.C. (2005). Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102, 8245–8250.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Tilman, D. (1999). The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474.

    Google Scholar 

  • Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., and Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302.

    Article  CAS  Google Scholar 

  • Tilman, D., Reich, P.B., and Isbell, F. (2012). Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc Natl Acad Sci USA 109, 10394–10397.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T., and Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science 294, 843–845.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tilman, D., Wedin, D., and Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720.

    Article  CAS  ADS  Google Scholar 

  • van den Driessche, R., Rude, W., and Martens, L. (2003). Effect of fertilization and irrigation on growth of aspen (Populus tremuloides Michx.) seedlings over three seasons. For Ecol Manage 186, 381–389.

    Article  Google Scholar 

  • van Zuijlen, K., Klanderud, K., Dahle, O.S., Hasvik, Å., Knutsen, M.S., Olsen, S.L., Sundsbø, S., and Asplund, J. (2021). Community-level functional traits of alpine vascular plants, bryophytes, and lichens after long-term experimental warming. Arct Sci 8, 843–857.

    Article  Google Scholar 

  • Verheyen, K., De Frenne, P., Baeten, L., Waller, D.M., Hédl, R., Perring, M. P., Blondeel, H., Brunet, J., Chudomelová, M., Decocq, G., et al. (2017). Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83.

    Article  Google Scholar 

  • Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23, 1696–1718.

    Article  ADS  Google Scholar 

  • Villéger, S., Mason, N.W.H., and Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301.

    Article  PubMed  Google Scholar 

  • Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., and Garnier, E. (2007). Let the concept of trait be functional! Oikos 116, 882–892.

    Article  ADS  Google Scholar 

  • Walker, B., Kinzig, A., and Langridge, J. (1999). Original articles: plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113.

    Article  Google Scholar 

  • Wang, H., Harrison, S.P., Prentice, I.C., Yang, Y., Bai, F., Furstenau Togashi, H., Wang, M., Zhou, S., and Ni, J. (2017). The China Plant Trait Database. PANGAEA doi: https://doi.org/10.1594/PANGAEA.871819.

  • Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., Calladine, A., Fourqurean, J.W., Heck Kenneth L. J., Hughes, A.R., et al. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106, 12377–12381.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz, S., Gallagher, R.V., Jacobs, B.F., Kooyman, R., Law, E.A., et al. (2017). Global climatic drivers of leaf size. Science 357, 917–921.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Groom, P.K., Hikosaka, K., Lee, W., Lusk, C.H., Niinemets, Ü., Oleksyn, J., et al. (2005). Modulation of leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr 14, 411–421.

    Article  Google Scholar 

  • Wright, I.J., Reich, P.B., and Westoby, M. (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 15, 423–434.

    Article  Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., et al. (2004). The worldwide leaf economics spectrum. Nature 428, 821–827.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yang, H., Wu, M., Liu, W., Zhang, Z., Zhang, N., and Wan, S. (2011). Community structure and composition in response to climate change in a temperate steppe. Glob Change Biol 17, 452–465.

    Article  ADS  Google Scholar 

  • Yin, C., Pang, X., and Chen, K. (2009). The effects of water, nutrient availability and their interaction on the growth, morphology and physiology of two poplar species. Environ Exp Bot 67, 196–203.

    Article  CAS  Google Scholar 

  • Yin, Q., Wang, L., Lei, M., Dang, H., Quan, J., Tian, T., Chai, Y., and Yue, M. (2018). The relationships between leaf economics and hydraulic traits of woody plants depend on water availability. Sci Total Environ 621, 245–252.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zhang, L., Liu, X., Sun, Z., Bu, W., Bongers, F.J., Song, X., Yang, J., Sun, Z., Li, Y., Li, S., et al. (2023). Functional trait space and redundancy of plant communities decrease toward cold temperature at high altitudes in Southwest China. Sci China Life Sci 66, 376–384.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Bai, W., Li, Q., Guo, Y., and Zhang, W. (2021). Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe. New Phytol 229, 1481–1491.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Wang, J., Bai, W., Zhang, Y., and Zhang, W.H. (2019). The response of root traits to precipitation change of herbaceous species in temperate steppes. Funct Ecol 33, 2030–2041.

    Article  Google Scholar 

  • Zuo, X., Cheng, H., Zhao, S., Yue, P., Liu, X., Wang, S., Liu, L., Xu, C., Luo, W., Knops, J.M.H., et al. (2020). Observational and experimental evidence for the effect of altered precipitation on desert and steppe communities. Glob Ecol Conserv 21, e00864.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32125026, 31988102), the National Key Research Development Program of China (2022YFF0802300), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Wang.

Ethics declarations

Compliance and ethics The authors declare no conflict of interest. Data sets utilized for this research are as follows: an integrated data base on China’s grassland species (https://doi.org/10.1002/ecy.1780), The China Plant Trait Database (https://doi.pangaea.de/10.1594/PANGAEA.871819). All the trait data and diversity data utilized for this research are provided as private-for-peer review via the following link: https://datadryad.org/stash/share/32i7GHu1RiAIMzET3U-G6PzXM1RxOSYZNsjmFrWdN5k. Upon acceptance, data will be provided via Dryad with the above link.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, H., Xiong, X., Jiang, F. et al. Climate change filtered out resource-acquisitive plants in a temperate grassland in Inner Mongolia, China. Sci. China Life Sci. 67, 403–413 (2024). https://doi.org/10.1007/s11427-022-2338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2338-1

Navigation