Skip to main content
Log in

Translocation of gut microbes to epididymal white adipose tissue drives lipid metabolism disorder under heat stress

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Heat stress induces multi-organ damage and serious physiological dysfunction in mammals, and gut bacteria may translocate to extra-intestinal tissues under heat stress pathology. However, whether gut bacteria translocate to the key metabolic organs and impair function as a result of heat stress remains unknown. Using a heat stress-induced mouse model, heat stress inhibited epididymal white adipose tissue (eWAT) expansion and induced lipid metabolic disorder but did not damage other organs, such as the heart, liver, spleen, or muscle. Microbial profiling analysis revealed that heat stress shifted the bacterial community in the cecum and eWAT but not in the inguinal white adipose tissue, blood, heart, liver, spleen, or muscle. Notably, gut-vascular barrier function was impaired, and the levels of some bacteria, particularly Lactobacillus, were higher in the eWAT, as confirmed by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) staining when mice were under heat stress. Moreover, integrated multi-omics analysis showed that the eWAT microbiota was associated with host lipid metabolism, and the expression of genes involved in the lipid metabolism in eWAT was upregulated under heat stress. A follow-up microbial supplementation study after introducing Lactobacillus plantarum to heat-stressed mice revealed that the probiotic ameliorated heat stress-induced loss of eWAT and dyslipidemia and reduced gut bacterial translocation to the eWAT by improving gut barrier function. Overall, our findings suggest that gut bacteria, particularly Lactobacillus spp., play a crucial role in heat stress-induced lipid metabolism disorder and that there is therapeutic potential for using probiotics, such as Lactobacillus plantarum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article or its supporting information files.

References

  • Agus, A., Clément, K., and Sokol, H. (2021). Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70, 1174–1182.

    CAS  PubMed  Google Scholar 

  • Alexander, J.W., Gianotti, L., Pyles, T., Carey, M.A., and Babcock, G.F. (1991). Distribution and survival of Escherichia coli translocating from the intestine after thermal injury. Ann Surg 213, 558–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amar, J., Lange, C., Payros, G., Garret, C., Chabo, C., Lantieri, O., Courtney, M., Marre, M., Charles, M.A., Balkau, B., et al. (2013). Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS ONE 8, e54461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, F., Estrada, A., Rex Gaskins, H., Stumpf, R.M., Yildirim, S., Torralba, M., et al. (2013). Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7, 1344–1353.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anhê, F.F., Jensen, B.A.H., Varin, T.V., Servant, F., Van Blerk, S., Richard, D., Marceau, S., Surette, M., Biertho, L., Lelouvier, B., et al. (2020). Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat Metab 2, 233–242.

    PubMed  Google Scholar 

  • Anhê, F.F., Nachbar, R.T., Varin, T.V., Trottier, J., Dudonné, S., Le Barz, M., Feutry, P., Pilon, G., Barbier, O., Desjardins, Y., et al. (2019). Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut 68, 453–464.

    PubMed  Google Scholar 

  • Bertocchi, A., Carloni, S., Ravenda, P.S., Bertalot, G., Spadoni, I., Lo Cascio, A., Gandini, S., Lizier, M., Braga, D., Asnicar, F., et al. (2021). Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 39, 708–724.e11.

    CAS  PubMed  Google Scholar 

  • Bhaswant, M., Poudyal, H., and Brown, L. (2015). Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J Nutral Biochem 26, 571–584.

    CAS  Google Scholar 

  • Bishehsari, F., Voigt, R.M., and Keshavarzian, A. (2020). Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol 16, 731–739.

    PubMed  PubMed Central  Google Scholar 

  • Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., and Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90.

    PubMed  PubMed Central  Google Scholar 

  • Bouchama, A., and Knochel, J.P. (2002). Heat stroke. N Engl J Med 346, 1978–1988.

    CAS  Google Scholar 

  • Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cani, P.D., Van Hul, M., Lefort, C., Depommier, C., Rastelli, M., and Everard, A. (2019). Microbial regulation of organismal energy homeostasis. Nat Metab 1, 34–46.

    CAS  PubMed  Google Scholar 

  • Cani, P.D. (2018). Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725.

    CAS  PubMed  Google Scholar 

  • Chen, C., Fang, S., Wei, H., He, M., Fu, H., Xiong, X., Zhou, Y., Wu, J., Gao, J., Yang, H., et al. (2021). Prevotella copri increases fat accumulation in pigs fed with formula diets. Microbiome 9, 175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Jiang, W., Liu, X., Du, Y., Liu, L., Ordovas, J.M., Lai, C.Q., and Shen, L. (2020a). Curcumin supplementation improves heat-stress-induced cardiac injury of mice: physiological and molecular mechanisms. J Nutr Biochem 78, 108331.

    CAS  PubMed  Google Scholar 

  • Chen, X., Li, P., Liu, M., Zheng, H., He, Y., Chen, M.X., Tang, W., Yue, X., Huang, Y., Zhuang, L., et al. (2020b). Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut 69, 513–522.

    CAS  PubMed  Google Scholar 

  • Chen, F., Yin, Y., Chua, B.T., and Li, P. (2020c). CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic 21, 94–105.

    CAS  PubMed  Google Scholar 

  • Chouchani, E.T., and Kajimura, S. (2019). Metabolic adaptation and maladaptation in adipose tissue. Nat Metab 1, 189–200.

    PubMed  PubMed Central  Google Scholar 

  • Crandall, C.G., and Wilson, T.E. (2015). Human cardiovascular responses to passive heat stress. Compr Physiol 5, 17–43.

    PubMed  PubMed Central  Google Scholar 

  • Cui, J., Arbab-Zadeh, A., Prasad, A., Durand, S., Levine, B.D., and Crandall, C.G. (2005). Effects of heat stress on thermoregulatory responses in congestive heart failure patients. Circulation 112, 2286–2292.

    PubMed  Google Scholar 

  • Daims, H., Brühl, A., Amann, R., Schleifer, K.H., and Wagner, M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–444.

    CAS  Google Scholar 

  • Deprince, A., Haas, J.T., and Staels, B. (2020). Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab 42, 101092.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, N., Zhang, X., Zhang, X.D., Jing, J., Liu, S.S., Mu, Y.P., Peng, L.L., Yan, Y.J., Xiao, G.M., Bi, X.Y., et al. (2020). Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 69, 1608–1619.

    CAS  PubMed  Google Scholar 

  • Ding, S., Yan, W., Fang, J., Jiang, H., and Liu, G. (2021). Potential role of Lactobacillus plantarum in colitis induced by dextran sulfate sodium through altering gut microbiota and host metabolism in murine model. Sci China Life Sci 64, 1906–1916.

    CAS  PubMed  Google Scholar 

  • Ebi, K.L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R.S., Ma, W., Malik, A., et al. (2021). Hot weather and heat extremes: health risks. Lancet 398, 698–708.

    PubMed  Google Scholar 

  • Gabler, N.K., Koltes, D., Schaumberger, S., Murugesan, G.R., and Reisinger, N. (2018). Diurnal heat stress reduces pig intestinal integrity and increases endotoxin translocation. Transl anim Sci 2, 1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galarraga, M., Campión, J., Muñoz-Barrutia, A., Boqué, N., Moreno, H., Martínez, J.A., Milagro, F., and Ortiz-de-Solórzano, C. (2012). Adiposoft: automated software for the analysis of white adipose tissue cellularity in histological sections. J Lipid Res 53, 2791–2796.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geng, Y., Ma, Q., Liu, Y.N., Peng, N., Yuan, F.F., Li, X.G., Li, M., Wu, Y. S., Li, B., Song, W., et al. (2015). Heatstroke induces liver injury via IL-1β and HMGB1-induced pyroptosis. J Hepatol 63, 622–633.

    CAS  PubMed  Google Scholar 

  • Gomes, A.C., Hoffmann, C., and Mota, J.F. (2018). The human gut microbiota: metabolism and perspective in obesity. Gut Microbes 1–18.

  • Guimarães, K.S.L., Braga, V.A., Noronha, S.I.S.R., Costa, W.K.A., Makki, K., Cruz, J.C., Brandão, L.R., Chianca Junior, D.A., Meugnier, E., Leulier, F., et al. (2020). Lactiplantibacillus plantarum WJL administration during pregnancy and lactation improves lipid profile, insulin sensitivity and gut microbiota diversity in dyslipidemic dams and protects male offspring against cardiovascular dysfunction in later life. Food Funct 11, 8939–8950.

    PubMed  Google Scholar 

  • Ha, C.W.Y., Martin, A., Sepich-Poore, G.D., Shi, B., Wang, Y., Gouin, K., Humphrey, G., Sanders, K., Ratnayake, Y., Chan, K.S.L., et al. (2020). Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666–683.e17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, D.M., Buettner, G.R., Oberley, L.W., Xu, L., Matthes, R.D., and Gisolfi, C.V. (2001). Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol 280, H509–H521.

    CAS  PubMed  Google Scholar 

  • Han, Q., Wang, J., Li, W., Chen, Z.J., and Du, Y. (2021). Androgen-induced gut dysbiosis disrupts glucolipid metabolism and endocrinal functions in polycystic ovary syndrome. Microbiome 9, 101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He, Z., Wu, J., Gong, J., Ke, J., Ding, T., Zhao, W., Cheng, W.M., Luo, Z., He, Q., Zeng, W., et al. (2021). Microbiota in mesenteric adipose tissue from Crohn’s disease promote colitis in mice. Microbiome 9, 228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, W., Ma, T., Liu, Y., Kwok, L. Y., Li, Y., Jin, H., Zhao, F., Shen, X., Shi, X., Sun, Z., et al. (2022). Spraying compound probiotics improves growth performance and immunity and modulates gut microbiota and blood metabolites of suckling piglets. Sci China Life Sci 66, 1092–1107.

    PubMed  Google Scholar 

  • Huber, J., Löffler, M., Bilban, M., Reimers, M., Kadl, A., Todoric, J., Zeyda, M., Geyeregger, R., Schreiner, M., Weichhart, T., et al. (2007). Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids. Int J Obes 31, 1004–1013.

    CAS  Google Scholar 

  • Jensen, B.A., and Marette, A. (2020). Microbial translocation in type 2 diabetes: when bacterial invaders overcome host defence in human obesity. Gut 69, 1724–1726.

    PubMed  Google Scholar 

  • Kjellstrom, T., Briggs, D., Freyberg, C., Lemke, B., Otto, M., and Hyatt, O. (2016). Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu Rev Public Health 37, 97–112.

    PubMed  Google Scholar 

  • Knights, D., Kuczynski, J., Charlson, E.S., Zaneveld, J., Mozer, M.C., Collman, R.G., Bushman, F.D., Knight, R., and Kelley, S.T. (2011). Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8, 761–763.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, F., Thom, U., Albrecht, E., Weikard, R., Nolte, W., Kuhla, B., and Kuehn, C. (2019). Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc Natl Acad Sci USA 116, 10333–10338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovats, R.S., and Hajat, S. (2008). Heat stress and public health: a critical review. Annu Rev Public Health 29, 41–55.

    PubMed  Google Scholar 

  • Lelouvier, B., Servant, F., Paíssé, S., Brunet, A., Benyahya, S., Serino, M., Valle, C., Ortiz, M.R., Puig, J., Courtney, M., et al. (2016). Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology 64, 2015–2027.

    CAS  PubMed  Google Scholar 

  • Le Roy, T., Moens de Hase, E., Van Hul, M., Paquot, A., Pelicaen, R., Régnier, M., Depommier, C., Druart, C., Everard, A., Maiter, D., et al. (2022). Dysosmobacter welbionis is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut 71, 534–543.

    PubMed  Google Scholar 

  • Li, H., Liu, F., Lu, J., Shi, J., Guan, J., Yan, F., Li, B., and Huo, G. (2020). Probiotic mixture of Lactobacillus plantarum strains improves lipid metabolism and gut microbiota structure in high fat diet-fed mice. Front Microbiol 11, 512.

    PubMed  PubMed Central  Google Scholar 

  • Li, Y., Ma, Z., Jiang, S., Hu, W., Li, T., Di, S., Wang, D., and Yang, Y. (2017). A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog Lipid Res 66, 42–49.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Gao, Y., Ma, F., Sun, M., Mu, G., and Tuo, Y. (2020a). The ameliorative effect of Lactobacillus plantarum Y44 oral administration on inflammation and lipid metabolism in obese mice fed with a high fat diet. Food Funct 11, 5024–5039.

    CAS  PubMed  Google Scholar 

  • Liu, M., Zhang, L., Chu, X.H., Ma, R., Wang, Y.W., Liu, Q., Zhang, N.Y., Karrow, N.A., and Sun, L.H. (2020b). Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder. Food Chem Toxicol 141, 111373.

    CAS  PubMed  Google Scholar 

  • Liu, M., Zhang, L., Mo, Y., Li, J., Yang, J., Wang, J., Karrow, N.A., Wu, H., and Sun, L. (2023). Ferroptosis is involved in deoxynivalenol-induced intestinal damage in pigs. J Anim Sci Biotechnol 14, 29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone, C.A., Hamady, M., Kelley, S.T., and Knight, R. (2007). Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73, 1576–1585.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, N., Guo, P., Chen, J., Qi, Z., Liu, C., Shen, J., Sun, Y., Chen, X., Chen, G.Q., and Ma, X. (2022). Poly-β-hydroxybutyrate alleviated diarrhea and colitis via Lactobacillus johnsonii biofilm-mediated maturation of sulfomucin. Sci China Life Sci 66, 1569–1588.

    PubMed  Google Scholar 

  • Machado, A., Almeida, C., Carvalho, A., Boyen, F., Haesebrouck, F., Rodrigues, L., Cerca, N., and Azevedo, N.F. (2013). Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Lactobacillus spp. in milk samples. Int J Food Microbiol 162, 64–70.

    CAS  PubMed  Google Scholar 

  • Massier, L., Chakaroun, R., Tabei, S., Crane, A., Didt, K.D., Fallmann, J., von Bergen, M., Haange, S.B., Heyne, H., Stumvoll, M., et al. (2020). Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 69, 1796–1806.

    CAS  PubMed  Google Scholar 

  • McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen, G.L., Knight, R., and Hugenholtz, P. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6, 610–618.

    CAS  PubMed  Google Scholar 

  • Monnerat, G., Seara, F.A.C., Evaristo, J.A.M., Carneiro, G., Evaristo, G.P.C., Domont, G., Nascimento, J.H.M., Mill, J.G., Nogueira, F.C.S., and Campos de Carvalho, A.C. (2018). Aging-related compensated hypogonadism: role of metabolomic analysis in physiopathological and therapeutic evaluation. J Steroid Biochem Mol Biol 183, 39–50.

    CAS  PubMed  Google Scholar 

  • Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., Mileti, E., Galbiati, M., Invernizzi, P., Adorini, L., et al. (2019). Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 71, 1216–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nejman, D., Livyatan, I., Fuks, G., Gavert, N., Zwang, Y., Geller, L.T., Rotter-Maskowitz, A., Weiser, R., Mallel, G., Gigi, E., et al. (2020). The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odi, R., Invernizzi, R.W., Gallily, T., Bialer, M., and Perucca, E. (2021). Fenfluramine repurposing from weight loss to epilepsy: what we do and do not know. Pharmacol Ther 226, 107866.

    CAS  Google Scholar 

  • Oh, D.Y., Talukdar, S., Bae, E.J., Imamura, T., Morinaga, H., Fan, W.Q., Li, P., Lu, W.J., Watkins, S.M., and Olefsky, J.M. (2010). GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698.

    CAS  PubMed Central  Google Scholar 

  • Paíssé, S., Valle, C., Servant, F., Courtney, M., Burcelin, R., Amar, J., and Lelouvier, B. (2016). Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 56, 1138–1147.

    PubMed  Google Scholar 

  • Pan, Z., Hu, Y., Huang, Z., Han, N., Li, Y., Zhuang, X., Yin, J., Peng, H., Gao, Q., Zhang, W., et al. (2022). Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Sci China Life Sci 65, 2093–2113.

    CAS  PubMed  Google Scholar 

  • Patni, N., and Garg, A. (2015). Congenital generalized lipodystrophies— new insights into metabolic dysfunction. Nat Rev Endocrinol 11, 522–534.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce, S.C., Lonergan, S.M., Huff-Lonergan, E., Baumgard, L.H., and Gabler, N.K. (2015). Acute heat stress and reduced nutrient intake alter intestinal proteomic profile and gene expression in pigs. PLoS ONE 10, e0143099.

    PubMed  PubMed Central  Google Scholar 

  • Quan, L.H., Zhang, C., Dong, M., Jiang, J., Xu, H., Yan, C., Liu, X., Zhou, H., Zhang, H., Chen, L., et al. (2020). Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation. Gut 69, 1239–1247.

    CAS  PubMed  Google Scholar 

  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682.

    CAS  PubMed  Google Scholar 

  • Sorensen, C., and Garcia-Trabanino, R. (2019). A new era of climate medicine—addressing heat-triggered renal disease. N Engl J Med 381, 693–696.

    PubMed  Google Scholar 

  • Spadoni, I., Pietrelli, A., Pesole, G., and Rescigno, M. (2016). Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes 7, 540–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spadoni, I., Zagato, E., Bertocchi, A., Paolinelli, R., Hot, E., Di Sabatino, A., Caprioli, F., Bottiglieri, L., Oldani, A., Viale, G., et al. (2015). A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834.

    CAS  PubMed  Google Scholar 

  • Sun, D., Bai, R., Zhou, W., Yao, Z., Liu, Y., Tang, S., Ge, X., Luo, L., Luo, C., Hu, G., et al. (2021). Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae. Gut 70, 666–676.

    CAS  PubMed  Google Scholar 

  • Tang, W.H.W., Kitai, T., and Hazen, S.L. (2017). Gut microbiota in cardiovascular health and disease. Circ Res 120, 1183–1196.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanoue, T., Morita, S., Plichta, D.R., Skelly, A.N., Suda, W., Sugiura, Y., Narushima, S., Vlamakis, H., Motoo, I., Sugita, K., et al. (2019). A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605.

    CAS  PubMed  Google Scholar 

  • Wang, J., Ji, H., Wang, S., Liu, H., Zhang, W., Zhang, D., and Wang, Y. (2018). Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol 9, 1953.

    PubMed  PubMed Central  Google Scholar 

  • Wang, X., Andersson, R., Soltesz, V., Guo, W., and Bengmark, S. (1993). Water-soluble ethylhydroxyethyl cellulose prevents bacterial translocation induced by major liver resection in the rat. Ann Surg 217, 155–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen, C., Li, S., Wang, J., Zhu, Y., Zong, X., Wang, Y., and Jin, M. (2021). Heat stress alters the intestinal microbiota and metabolomic profiles in mice. Front Microbiol 12, 706772.

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, T., Shimizu, K., Kokubu, Y., Nishijima, M., Takeda, S., Ogura, H., and Kawabata, K. (2019). Effect of heat stress on blood-brain barrier integrity in iPS cell-derived microvascular endothelial cell models. PLoS ONE 14, e0222113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, P., Wang, Y., Yang, W.T., Li, Z., Zhang, X.J., Zhou, L., and Gui, J.F. (2021). Upregulation of the PPAR signaling pathway and accumulation of lipids are related to the morphological and structural transformation of the dragon-eye goldfish eye. Sci China Life Sci 64, 1031–1049.

    CAS  PubMed  Google Scholar 

  • Yu, G., Xu, C., Zhang, D., Ju, F., and Ni, Y. (2022). MetOrigin: discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. iMeta 1.

  • Zhai, Q., Feng, S., Arjan, N., and Chen, W. (2019). A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr 59, 3227–3236.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Zhao, X.H., Yang, L., Chen, X.Y., Jiang, R.S., Jin, S.H., and Geng, Z.Y. (2017). Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poultry Sci 96, 4325–4332.

    CAS  Google Scholar 

  • Zhao, F., Whiting, S., Lambourne, S., Aitken, R.J., and Sun, Y. (2021a). Melatonin alleviates heat stress-induced oxidative stress and apoptosis in human spermatozoa. Free Radic Biol Med 164, 410–416.

    CAS  PubMed  Google Scholar 

  • Zhao, L., Deng, J., Xu, Z.J., Zhang, W.P., Khalil, M.M., Karrow, N.A., and Sun, L.H. (2021b). Mitigation of aflatoxin B1 hepatoxicity by dietary Hedyotis diffusa is associated with activation of NRF2/ARE signaling in chicks. Antioxidants 10, 878.

    PubMed Central  Google Scholar 

  • Zhao, L., Liu, M., Sun, H., Yang, J.C., Huang, Y.X., Huang, J.Q., Lei, X., and Sun, L.H. (2023). Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. Sci China Life Sci doi: https://doi.org/10.1007/s11427-022-2226-1.

  • Zheng, C., Chen, T., Lu, J., Wei, K., Tian, H., Liu, W., Xu, T., Wang, X., Wang, S., Yang, R., et al. (2021). Adjuvant treatment and molecular mechanism of probiotic compounds in patients with gastric cancer after gastrectomy. Food Funct 12, 6294–6308.

    CAS  PubMed  Google Scholar 

  • Zhuang, P., Li, H., Jia, W., Shou, Q., Zhu, Y., Mao, L., Wang, W., Wu, F., Chen, X., Wan, X., et al. (2021). Eicosapentaenoic and docosahexaenoic acids attenuate hyperglycemia through the microbiome-gut-organs axis in db/db mice. Microbiome 9, 185.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, J., Chassaing, B., Singh, V., Pellizzon, M., Ricci, M., Fythe, M.D., Kumar, M.V., and Gewirtz, A.T. (2018). Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23, 41–53.e4.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China Project (2022YFD1300402), fundamental research funds for the Central Universities (2662022DKPY004, 2662023DKPY002), and the Top-Notch Young Talent Supporting Program (to LH Sun).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lv-Hui Sun.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, ZC., Yang, JC., Huang, YX. et al. Translocation of gut microbes to epididymal white adipose tissue drives lipid metabolism disorder under heat stress. Sci. China Life Sci. 66, 2877–2895 (2023). https://doi.org/10.1007/s11427-022-2320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2320-y

Navigation