Skip to main content
Log in

Enlarged fins of Tibetan catfish provide new evidence of adaptation to high plateau

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The uplift of the Tibetan Plateau significantly altered the geomorphology and climate of the Euroasia by creating large mountains and rivers. Fishes are more likely to be affected relative to other organisms, as they are largely restricted to river systems. Faced with the rapidly flowing water in the Tibetan Plateau, a group of catfish has evolved greatly enlarged pectoral fins with more numbers of fin-rays to form an adhesive apparatus. However, the genetic basis of these adaptations in Tibetan catfishes remains elusive. In this study, we performed comparative genomic analyses based on the chromosome-level genome of Glyptosternum maculatum in family Sisoridae and detected some proteins with conspicuously high evolutionary rates in particular in genes involved in skeleton development, energy metabolism, and hypoxia response. We found that the hoxd12a gene evolved faster and a loss-of-function assay of hoxd12a supports a potential role for this gene in shaping the enlarged fins of these Tibetan catfishes. Other genes with amino acid replacements and signatures of positive selection included proteins involved in low temperature (TRMU) and hypoxia (VHL) responses. Functional assays reveal that the G. maculatumTRMU allele generates more mitochondrial ATP than the ancestral allele found in low-altitude fishes. Functional assays of VHL alleles suggest that the G. maculatum allele has lower transactivation activity than the low-altitude forms. These findings provide a window into the genomic underpinnings of physiological adaptations that permit G. maculatum to survive in the harsh environment of the Tibetan Himalayas that mirror those that are convergently found in other vertebrates such as humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Raw sequencing reads have been deposited in NCBI with the BioProject accession PRJNA820898.

References

  • Ahn, D., and Ho, R.K. (2008). Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Dev Biol 322, 220–233.

    Article  CAS  PubMed  Google Scholar 

  • Alioto, T., Picardi, E., Guigó, R., and Pesole, G. (2013). ASPic-GeneID: a lightweight pipeline for gene prediction and alternative isoforms detection. Biomed Res Int 2013, 1–11.

    Article  Google Scholar 

  • Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickler, P.E., and Buck, L.T. (2007). Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 69, 145–170.

    Article  CAS  PubMed  Google Scholar 

  • Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and genomewise. Genome Res 14, 988–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., and Shendure, J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31, 1119–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, L., Huang, Q., Wu, Z., Cao, D.D., Ma, Z., Xu, Q., Hu, P., Fu, Y., Shen, Y., Chan, J., et al. (2016). Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids. Nat Commun 7, 12987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capella-Gutiérrez, S., Silla-Martínez, J.M., and Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu, X.L., Zheng, B.S., and Dai, D.Y. (1999). Fauna Sinica (Osteichthyes: Siluriformes) (in Chinese). Beijing: Science Press.

    Google Scholar 

  • Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., and Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676.

    Article  CAS  PubMed  Google Scholar 

  • De Bie, T., Cristianini, N., Demuth, J.P., and Hahn, M.W. (2006). CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271.

    Article  CAS  PubMed  Google Scholar 

  • Eddy, S.R. (1996). Hidden Markov models. Curr Opin Struct Biol 6, 361–365.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Yacoubi, B., Bailly, M., and de Crécy-Lagard, V. (2012). Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet 46, 69–95.

    Article  CAS  PubMed  Google Scholar 

  • Emms, D.M., and Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16, 157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge, R.L., Cai, Q., Shen, Y.Y., San, A., Ma, L., Zhang, Y., Yi, X., Chen, Y., Yang, L., Huang, Y., et al. (2013). Draft genome sequence of the Tibetan antelope. Nat Commun 4, 1858.

    Article  PubMed  Google Scholar 

  • Govoni, K.E., Lee, S.K., Chadwick, R.B., Yu, H., Kasukawa, Y., Baylink, D.J., and Mohan, S. (2006). Whole genome microarray analysis of growth hormone-induced gene expression in bone: T-box3, a novel transcription factor, regulates osteoblast proliferation. Am J Physiol Endocrinol Metab 291, E128–E136.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., He, S., and Zhang, Y. (2005). Phylogeny and biogeography of Chinese sisorid catfishes re-examined using mitochondrial cytochrome b and 16S rRNA gene sequences. Mol Phylogenet Evol 35, 344–362.

    Article  CAS  PubMed  Google Scholar 

  • Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell, C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol 9, R7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, L., Monné, M., Okumura, H., Schwend, T., Cherry, A.L., Flot, D., Matsuda, T., and Jovine, L. (2010). Insights into egg coat assembly and egg-sperm interaction from the X-ray structure of full-length ZP3. Cell 143, 404–415.

    Article  CAS  PubMed  Google Scholar 

  • Hao, Y., Xiong, Y., Cheng, Y., Song, G., Jia, C., Qu, Y., and Lei, F. (2019). Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. Proc Natl Acad Sci USA 116, 11851–11856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57.

    Article  CAS  PubMed  Google Scholar 

  • Hui, C., and Joyner, A.L. (1993). A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3, 241–246.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., Lv, Y., Cheng, L., Yang, K., Bian, C., Wang, X., Li, Y., Pan, X., You, X., Zhang, Y., et al. (2019). Whole-genome sequencing of the giant devil catfish, Bagarius yarrelli. Genome Biol Evol 11, 2071–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110, 462–467.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S., Xu, Y., You, Q., Flügel, W.A., Pepin, N., and Yao, T. (2010). Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5, 015101.

    Article  Google Scholar 

  • Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. (2019). Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37, 540–546.

    Article  CAS  PubMed  Google Scholar 

  • Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, A.M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27, 722–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics 5, 59. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.

    Google Scholar 

  • Li, H., and Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. Nature 475, 493–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J.T., Gao, Y.D., Xie, L., Deng, C., Shi, P., Guan, M.L., Huang, S., Ren, J.L., Wu, D.D., Ding, L., et al. (2018). Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proc Natl Acad Sci USA 115, 8406–8411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Tian, S., Jin, L., Zhou, G., Li, Y., Zhang, Y., Wang, T., Yeung, C.K. L., Chen, L., Ma, J., et al. (2013). Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet 45, 1431–1438.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Liu, Q., Chen, Z., Liu, Y., Zhou, C., Liang, Q., Ma, C., Zhou, J., Pan, Y., Chen, M., et al. (2018). Draft genome of Glyptosternon maculatum, an endemic fish from Tibet Plateau. Gigascience 7.

  • Liu, X.D., and Dong, B.W. (2013). Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin Sci Bull 58, 4277–4291.

    Article  Google Scholar 

  • Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, X., Kang, J., Chen, W., Zhou, C., and He, S. (2015). Biogeographic history and high-elevation adaptations inferred from the mitochondrial genome of Glyptosternoid fishes (Sisoridae, Siluriformes) from the southeastern Tibetan Plateau. BMC Evol Biol 15, 233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Majoros, W.H., Pertea, M., and Salzberg, S.L. (2004). TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275.

    Article  CAS  PubMed  Google Scholar 

  • Monaghan, R.M., and Whitmarsh, A.J. (2015). Mitochondrial proteins moonlighting in the nucleus. Trends Biochem Sci 40, 728–735.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Z., He, S., and Zhang, Y. (2004). Phylogenetic relationships of glyptosternoid fishes (Siluriformes: Sisoridae) inferred from mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol 31, 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Z., Ho, S.Y.W., Zhang, Y., and He, S. (2006). Uplift of the Tibetan plateau: evidence from divergence times of glyptosternoid catfishes. Mol Phylogenet Evol 39, 568–572.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, Q., Zhang, G., Ma, T., Qian, W., Wang, J., Ye, Z., Cao, C., Hu, Q., Kim, J., Larkin, D.M., et al. (2012). The yak genome and adaptation to life at high altitude. Nat Genet 44, 946–949.

    Article  CAS  PubMed  Google Scholar 

  • Qu, Y., Chen, C., Chen, X., Hao, Y., She, H., Wang, M., Ericson, P.G.P., Lin, H., Cai, T., Song, G., et al. (2021). The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau. Proc Natl Acad Sci USA 118, e2012398118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu, Y., Zhao, H., Han, N., Zhou, G., Song, G., Gao, B., Tian, S., Zhang, J., Zhang, R., Meng, X., et al. (2013). Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan Plateau. Nat Commun 4, 2071.

    Article  PubMed  Google Scholar 

  • Qu, Y., Chen, C., Xiong, Y., She, H., Zhang, Y.E., Cheng, Y., DuBay, S., Li, D., Ericson, P.G.P., Hao, Y., et al. (2020). Rapid phenotypic evolution with shallow genomic differentiation during early stages of high elevation adaptation in Eurasian Tree Sparrows. Natl Sci Rev 7, 113–127.

    Article  PubMed  Google Scholar 

  • Royden, L.H., Burchfiel, B.C., and van der Hilst, R.D. (2008). The geological evolution of the Tibetan Plateau. Science 321, 1054–1058.

    Article  CAS  PubMed  Google Scholar 

  • Schiffels, S., and Durbin, R. (2014). Inferring human population size and separation history from multiple genome sequences. Nat Genet 46, 919–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spicer, R.A., Su, T., Valdes, P.J., Farnsworth, A., Wu, F.X., Shi, G., Spicer, T.E.V., and Zhou, Z. (2021). Why ‘the uplift of the Tibetan Plateau’ is a myth. Natl Sci Rev 8.

  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanke, M., Diekhans, M., Baertsch, R., and Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Tarailo-Graovac, M., and Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics 25.

  • Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3, 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Shen, Y., Feng, C., Zhao, K., Song, Z., Zhang, Y., Yang, L., and He, S. (2016). Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Sci Rep 6, 29690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K., Shen, Y., Yang, Y., Gan, X., Liu, G., Hu, K., Li, Y., Gao, Z., Zhu, L., Yan, G., et al. (2019). Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. Nat Ecol Evol 3, 823–833.

    Article  PubMed  Google Scholar 

  • Wu, Y.F., and Wu, C.Z. (1992). The Fishes of the Qinghai-Xizang Plateau (in Chinese). Chengdu: Sichuan Science and Technology Press.

    Google Scholar 

  • Xiao, S.J., Mou, Z.B., Yang, R.B., Fan, D.D., Liu, J.Q., Zou, Y., Zhu, S.L., Zou, M., Zhou, C.W., and Liu, H.P. (2021). Genome and population evolution and environmental adaptation of Glyptosternon maculatum on the Qinghai-Tibet Plateau. Zoological Res 42, 502–513.

    Article  Google Scholar 

  • Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., Kong, L., Gao, G., Li, C.Y., and Wei, L. (2011). KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39, W316–W322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, Y., Fan, L., Hao, Y., Cheng, Y., Chang, Y., Wang, J., Lin, H., Song, G., Qu, Y., and Lei, F. (2020). Physiological and genetic convergence supports hypoxia resistance in high-altitude songbirds. PloS Genet 16, e1009210.

    Article  Google Scholar 

  • Yang, L., Wang, Y., Sun, N., Chen, J., and He, S. (2021). Genomic and functional evidence reveals convergent evolution in fishes on the Tibetan Plateau. Mol Ecol 30, 5152–5164.

    Article  Google Scholar 

  • Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Yu, L., Wang, G.D., Ruan, J., Chen, Y.B., Yang, C.P., Cao, X., Wu, H., Liu, Y.H., Du, Z.L., Wang, X.P., et al. (2016). Genomic analysis of snubnosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat Genet 48, 941–952.

    Article  Google Scholar 

  • Yue, P.Q. (2000). Fauna Sinica: Osteichthyes Cypriniformes III (in Chinese). Beijing: Science Press.

    Google Scholar 

  • Zhang, Z., Xu, D., Wang, L., Hao, J., Wang, J., Zhou, X., Wang, W., Qiu, Q., Huang, X., Zhou, J., et al. (2016). Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol 26, 1813–1819.

    Article  Google Scholar 

  • Zhu, X., Guan, Y., Signore, A.V., Natarajan, C., DuBay, S.G., Cheng, Y., Han, N., Song, G., Qu, Y., Moriyama, H., et al. (2018). Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proc Natl Acad Sci USA 115, 1865–1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000), the National Natural Science Foundation of China (32170480, 31972866, 31702016, 31601858, 32022009), Chinese Academy of Sciences (Youth Innovation Promotion Association, Chinese Academy of Sciences (http://www.yicas.cn), the Pioneer Hundred Talents Program, and ZDBS-LY-SM005), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, 2019QZKK0501), State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (GREKF21-04), and the Young Top-notch Talent Cultivation Program of Hubei Province. This work was supported by the Wuhan Branch, Supercomputing Center, Chinese Academy of Sciences, China. We are grateful to Prof. Igor Schneider from Instituto de Ciencias Biologicas, Universidade Federal do Para for help with English editing. We thank Prof. Le Kang for the comments of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Axel Meyer, Baocheng Guo or Shunping He.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Sun, N., Zeng, H. et al. Enlarged fins of Tibetan catfish provide new evidence of adaptation to high plateau. Sci. China Life Sci. 66, 1554–1568 (2023). https://doi.org/10.1007/s11427-022-2253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2253-7

Navigation