Skip to main content

Advertisement

Log in

Structure-based insights into recognition and regulation of SAM-sensing riboswitches

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Riboswitches are highly conserved RNA elements that located in the 5′-UTR of mRNAs, which undergo real-time structure conformational change to achieve the regulation of downstream gene expression by sensing their cognate ligands. S-adenosylmethionine (SAM) is a ubiquitous methyl donor for transmethylation reactions in all living organisms. SAM riboswitch is one of the most abundant riboswitches that bind to SAM with high affinity and selectivity, serving as regulatory modules in multiple metabolic pathways. To date, seven SAM-specific riboswitch classes that belong to four families, one SAM/SAH riboswitch and one SAH riboswitch have been identified. Each SAM riboswitch family has a well-organized tertiary core scaffold to support their unique ligand-specific binding pocket. In this review, we summarize the current research progress on the distribution, structure, ligand recognition and gene regulation mechanism of these SAM-related riboswitch families, and further discuss their evolutionary prospects and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blount, K.F., and Breaker, R.R. (2006). Riboswitches as antibacterial drug targets. Nat Biotechnol 24, 1558–1564.

    Article  CAS  Google Scholar 

  • Boyapati, V.K., Huang, W., Spedale, J., and Aboul-Ela, F. (2012). Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch. RNA 18, 1230–1243.

    Article  CAS  Google Scholar 

  • Breaker, R.R. (2022). The biochemical landscape of riboswitch ligands. Biochemistry 61, 137–149.

    Article  CAS  Google Scholar 

  • Breaker, R.R. (2012). Riboswitches and the RNA world. Cold Spring Harbor Perspectives Biol 4, a003566.

    Article  Google Scholar 

  • Caron, M.P., Bastet, L., Lussier, A., Simoneau-Roy, M., Massé, E., and Lafontaine, D.A. (2012). Dual-acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci USA 109, E3444–E3453.

    Article  CAS  Google Scholar 

  • Cheah, M.T., Wachter, A., Sudarsan, N., and Breaker, R.R. (2007). Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500.

    Article  CAS  Google Scholar 

  • Chen, B., LeBlanc, R., and Dayie, T.K. (2016). SAM-II riboswitch samples at least two conformations in solution in the absence of ligand: implications for recognition. Angew Chem Int Ed 55, 2724–2727.

    Article  CAS  Google Scholar 

  • Chen, B., Zuo, X., Wang, Y.X., and Dayie, T.K. (2012). Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy. Nucleic Acids Res 40, 3117–3130.

    Article  CAS  Google Scholar 

  • Corbino, K.A., Barrick, J.E., Lim, J., Welz, R., Tucker, B.J., Puskarz, I., Mandal, M., Rudnick, N.D., and Breaker, R.R. (2005). Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 6, R70.

    Article  Google Scholar 

  • Dai, P., Wang, X., and Liu, M.F. (2020). A dual role of the PIWI/piRNA machinery in regulating mRNAs during mouse spermiogenesis. Sci China Life Sci 63, 447–449.

    Article  Google Scholar 

  • Deigan, K.E., and Ferré-D’Amaré, A.R. (2011). Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res 44, 1329–1338.

    Article  CAS  Google Scholar 

  • Doshi, U., Kelley, J.M., and Hamelberg, D. (2011). Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch. RNA 18, 300–307.

    Article  Google Scholar 

  • Edwards, A.L., Reyes, F.E., Héroux, A., and Batey, R.T. (2010). Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA 16, 2144–2155.

    Article  CAS  Google Scholar 

  • Eschbach, S.H., St-Pierre, P., Penedo, J.C., and Lafontaine, D.A. (2012). Folding of the SAM-I riboswitch. RNA Biol 9, 535–541.

    Article  CAS  Google Scholar 

  • Fontecave, M., Atta, M., and Mulliez, E. (2004). S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29, 243–249.

    Article  CAS  Google Scholar 

  • Fuchs, R.T., Grundy, F.J., and Henkin, T.M. (2006). The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nat Struct Mol Biol 13, 226–233.

    Article  CAS  Google Scholar 

  • Gilbert, S.D., Rambo, R.P., Van Tyne, D., and Batey, R.T. (2008). Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat Struct Mol Biol 15, 177–182.

    Article  CAS  Google Scholar 

  • Gong, C., Cheng, Z., Yang, Y., Shen, J., Zhu, Y., Ling, L., Lin, W., Yu, Z., Li, Z., Tan, W., et al. (2022). A 10-miRNA risk score-based prediction model for pathological complete response to neoadjuvant chemotherapy in hormone receptor-positive breast cancer. Sci China Life Sci, doi: https://doi.org/10.1007/s11427-022-2104-3.

  • Gong, S., Wang, Y., Wang, Z., Wang, Y., and Zhang, W. (2016). Reversible-switch mechanism of the SAM-III riboswitch. J Phys Chem B 120, 12305–12311.

    Article  CAS  Google Scholar 

  • Grundy, F.J., and Henkin, T.M. (1998). The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol 30, 737–749.

    Article  CAS  Google Scholar 

  • Haller, A., Rieder, U., Aigner, M., Blanchard, S.C., and Micura, R. (2011a). Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7, 393–400.

    Article  CAS  Google Scholar 

  • Haller, A., Soulière, M.F., and Micura, R. (2011b). The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44, 1339–1348.

    Article  CAS  Google Scholar 

  • Halliday, N.M., Hardie, K.R., Williams, P., Winzer, K., and Barrett, D.A. (2010). Quantitative liquid chromatography-tandem mass spectrometry profiling of activated methyl cycle metabolites involved in LuxS-dependent quorum sensing in Escherichia coli. Anal Biochem 403, 20–29.

    Article  CAS  Google Scholar 

  • Hickey, S.F., and Hammond, M.C. (2014). Structure-guided design of fluorescent S-adenosylmethionine analogs for a high-throughput screen to target SAM-I riboswitch RNAs. Chem Biol 21, 345–356.

    Article  CAS  Google Scholar 

  • Hilbers, C.W., Michiels, P.J.A., and Heus, H.A. (1998). New developments in structure determination of pseudoknots. Biopolymers 48, 137–153.

    Article  CAS  Google Scholar 

  • Howe, J.A., Wang, H., Fischmann, T.O., Balibar, C.J., Xiao, L., Galgoci, A. M., Malinverni, J.C., Mayhood, T., Villafania, A., Nahvi, A., et al. (2015). Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677.

    Article  CAS  Google Scholar 

  • Huang, L., Liao, T.W., Wang, J., Ha, T., and Lilley, D.M.J. (2020). Crystal structure and ligand-induced folding of the SAM/SAH riboswitch. Nucleic Acids Res 46, 6869–6879.

    Article  Google Scholar 

  • Huang, L., and Lilley, D.M.J. (2018). Structure and ligand binding of the SAM-V riboswitch. Nucleic Acids Res 46, 6869–6879.

    Article  CAS  Google Scholar 

  • Huang, W., Kim, J., Jha, S., and Aboul-Ela, F. (2012). Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine. J Mol Biol 418, 331–349.

    Article  CAS  Google Scholar 

  • Jiang, H., Gao, Y., Zhang, L., Chen, D., Gan, J., and Murchie, A.I.H. (2021). The identification and characterization of a selected SAM-dependent methyltransferase ribozyme that is present in natural sequences. Nat Catal 4, 872–881.

    Article  CAS  Google Scholar 

  • Kim, H., and Jaffrey, S.R. (2019). A fluorogenic RNA-based sensor activated by metabolite-induced RNA dimerization. Cell Chem Biol 26, 1725–1731.e6.

    Article  CAS  Google Scholar 

  • Klein, D.J., and Ferre-D’Amare, A.R. (2006). Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756.

    Article  CAS  Google Scholar 

  • Kozbial, P.Z., and Mushegian, A.R. (2005). Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 5, 19.

    Article  Google Scholar 

  • Kusakabe, Y., Ishihara, M., Umeda, T., Kuroda, D., Nakanishi, M., Kitade, Y., Gouda, H., Nakamura, K.T., and Tanaka, N. (2015). Structural insights into the reaction mechanism of S-adenosyl-L-homocysteine hydrolase. Sci Rep 5, 16641.

    Article  CAS  Google Scholar 

  • Li, X., Zhang, J.L., Lei, Y.N., Liu, X.Q., Xue, W., Zhang, Y., Nan, F., Gao, X., Zhang, J., Wei, J., et al. (2021). Linking circular intronic RNA degradation and function in transcription by RNase H1. Sci China Life Sci 64, 1795–1809.

    Article  CAS  Google Scholar 

  • Lim, J., Winkler, W.C., Nakamura, S., Scott, V., and Breaker, R.R. (2006). Molecular-recognition characteristics of SAM-binding riboswitches. Angew Chem Int Ed 45, 964–968.

    Article  CAS  Google Scholar 

  • Lu, C., Ding, F., Chowdhury, A., Pradhan, V., Tomsic, J., Holmes, W.M., Henkin, T.M., and Ke, A. (2010). SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. J Mol Biol 404, 803–818.

    Article  CAS  Google Scholar 

  • Lu, C., Smith, A.M., Ding, F., Chowdhury, A., Henkin, T.M., and Ke, A. (2011). Variable sequences outside the SAM-binding core critically influence the conformational dynamics of the SAM-III/SMK box riboswitch. J Mol Biol 409, 786–799.

    Article  CAS  Google Scholar 

  • Lu, C., Smith, A.M., Fuchs, R.T., Ding, F., Rajashankar, K., Henkin, T.M., and Ke, A. (2008). Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat Struct Mol Biol 15, 1076–1083.

    Article  CAS  Google Scholar 

  • Manz, C., Kobitski, A.Y., Samanta, A., Jäschke, A., and Nienhaus, G.U. (2018). The multi-state energy landscape of the SAM-I riboswitch: a single-molecule Förster resonance energy transfer spectroscopy study. J Chem Phys 148, 123324.

    Article  Google Scholar 

  • Manz, C., Kobitski, A.Y., Samanta, A., Keller, B.G., Jäschke, A., and Nienhaus, G.U. (2017). Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch. Nat Chem Biol 13, 1172–1178.

    Article  CAS  Google Scholar 

  • Meyer, M.M., Ames, T.D., Smith, D.P., Weinberg, Z., Schwalbach, M.S., Giovannoni, S.J., and Breaker, R.R. (2009). Identification of candidate structured RNAs in the marine organism ‘Candidatus Pelagibacter ubique’. BMC Genomics 10, 268.

    Article  Google Scholar 

  • Mirihana Arachchilage, G., Sherlock, M.E., Weinberg, Z., and Breaker, R. R. (2018). SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches. RNA Biol 15, 371–378.

    Article  Google Scholar 

  • Montange, R.K., and Batey, R.T. (2006). Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175.

    Article  CAS  Google Scholar 

  • Montange, R.K., Mondragón, E., van Tyne, D., Garst, A.D., Ceres, P., and Batey, R.T. (2010). Discrimination between closely related cellular metabolites by the SAM-I riboswitch. J Mol Biol 396, 761–772.

    Article  CAS  Google Scholar 

  • Paige, J.S., Nguyen-Duc, T., Song, W., and Jaffrey, S.R. (2012). Fluorescence imaging of cellular metabolites with RNA. Science 335, 1194.

    Article  CAS  Google Scholar 

  • Parveen, N., and Cornell, K.A. (2011). Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Mol Microbiol 79, 7–20.

    Article  CAS  Google Scholar 

  • Penchovsky, R., Pavlova, N., and Kaloudas, D. (2021). RSwitch: a novel bioinformatics database on riboswitches as antibacterial drug targets. IEEE ACM Trans Comput Biol Bioinf 18, 804–808.

    Article  CAS  Google Scholar 

  • Poiata, E., Meyer, M.M., Ames, T.D., and Breaker, R.R. (2009). A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. RNA 15, 2046–2056.

    Article  CAS  Google Scholar 

  • Price, I.R., Grigg, J.C., and Ke, A. (2014). Common themes and differences in SAM recognition among SAM riboswitches. Biochim Biophys Acta (BBA)-Gene Regulatory Mech 1839, 931–938.

    Article  CAS  Google Scholar 

  • Priyakumar, U.D. (2010). Atomistic details of the ligand discrimination mechanism of SMK/SAM-III Riboswitch. J Phys Chem B 114, 9920–9925.

    Article  CAS  Google Scholar 

  • Saw, P.E., and Song, E.W. (2020). siRNA therapeutics: a clinical reality. Sci China Life Sci 63, 485–500.

    Article  CAS  Google Scholar 

  • Saw, P.E., Xu, X., Chen, J., and Song, E.W. (2021). Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci 64, 22–50.

    Article  CAS  Google Scholar 

  • Schroeder, K.T., Daldrop, P., and Lilley, D.M.J. (2011). RNA tertiary interactions in a riboswitch stabilize the structure of a kink turn. Structure 19, 1233–1240.

    Article  CAS  Google Scholar 

  • Serganov, A., and Nudler, E. (2013). A decade of riboswitches. Cell 152, 17–24.

    Article  CAS  Google Scholar 

  • Smith, A.M., Fuchs, R.T., Grundy, F.J., and Henkin, T.M. (2010). The SAM-responsive SMK box is a reversible riboswitch. Mol Microbiol 78, 1393–1402.

    Article  CAS  Google Scholar 

  • Stoddard, C.D., Montange, R.K., Hennelly, S.P., Rambo, R.P., Sanbonmatsu, K.Y., and Batey, R.T. (2010). Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18, 787–797.

    Article  CAS  Google Scholar 

  • Struck, A.W., Thompson, M.L., Wong, L.S., and Micklefield, J. (2012). S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem 13, 2642–2655.

    Article  CAS  Google Scholar 

  • Sun, A., Gasser, C., Li, F., Chen, H., Mair, S., Krasheninina, O., Micura, R., and Ren, A. (2019). SAM-VI riboswitch structure and signature for ligand discrimination. Nat Commun 10, 5728.

    Article  CAS  Google Scholar 

  • Suresh, G., Srinivasan, H., Nanda, S., and Priyakumar, U.D. (2016). Ligand-induced stabilization of a duplex-like architecture is crucial for the switching mechanism of the SAM-III riboswitch. Biochemistry 55, 3349–3360.

    Article  CAS  Google Scholar 

  • Tang, D.J., Du, X., Shi, Q., Zhang, J.L., He, Y.P., Chen, Y.M., Ming, Z., Wang, D., Zhong, W.Y., Liang, Y.W., et al. (2020). A SAM-I riboswitch with the ability to sense and respond to uncharged initiator tRNA. Nat Commun 11, 2794.

    Article  CAS  Google Scholar 

  • Trausch, J.J., Xu, Z., Edwards, A.L., Reyes, F.E., Ross, P.E., Knight, R., and Batey, R.T. (2014). Structural basis for diversity in the SAM clan of riboswitches. Proc Natl Acad Sci USA 111, 6624–6629.

    Article  CAS  Google Scholar 

  • Truong, J., Hsieh, Y.F., Truong, L., Jia, G., and Hammond, M.C. (2018). Designing fluorescent biosensors using circular permutations of riboswitches. Methods 143, 102–109.

    Article  CAS  Google Scholar 

  • Tucker, B.J., and Breaker, R.R. (2005). Riboswitches as versatile gene control elements. Curr Opin Struct Biol 15, 342–348.

    Article  CAS  Google Scholar 

  • Wachter, A. (2010). Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol 7, 67–76.

    Article  CAS  Google Scholar 

  • Wachter, A., Tunc-Ozdemir, M., Grove, B.C., Green, P.J., Shintani, D.K., and Breaker, R.R. (2007). Riboswitch control of gene expression in plants by splicing and alternative 3 end processing of mRNAs. Plant Cell 19, 3437–3450.

    Article  CAS  Google Scholar 

  • Wang, J.X., and Breaker, R.R. (2008). Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem Cell Biol 86, 157–168.

    Article  CAS  Google Scholar 

  • Wang, J.X., Lee, E.R., Morales, D.R., Lim, J., and Breaker, R.R. (2008). Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29, 691–702.

    Article  CAS  Google Scholar 

  • Wei, P.P., Han, B.W., and Chen, Y.Q. (2013). Role of long non-coding RNAs in normal and malignant hematopoiesis. Sci China Life Sci 56, 867–875.

    Article  CAS  Google Scholar 

  • Weickhmann, A.K., Keller, H., Wurm, J.P., Strebitzer, E., Juen, M.A., Kremser, J., Weinberg, Z., Kreutz, C., Duchardt-Ferner, E., and Wöhnert, J. (2019). The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Res 47, 2654–2665.

    Article  CAS  Google Scholar 

  • Weinberg, Z., Barrick, J.E., Yao, Z., Roth, A., Kim, J.N., Gore, J., Wang, J. X., Lee, E.R., Block, K.F., Sudarsan, N., et al. (2007). Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 35, 4809–4819.

    Article  CAS  Google Scholar 

  • Weinberg, Z., Regulski, E.E., Hammond, M.C., Barrick, J.E., Yao, Z., Ruzzo, W.L., and Breaker, R.R. (2008). The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA 14, 822–828.

    Article  CAS  Google Scholar 

  • Weinberg, Z., Wang, J.X., Bogue, J., Yang, J., Corbino, K., Moy, R.H., and Breaker, R.R. (2010). Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 11, R31.

    Article  Google Scholar 

  • Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A., and Breaker, R.R. (2004). Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286.

    Article  CAS  Google Scholar 

  • Winkler, W.C., Nahvi, A., Sudarsan, N., Barrick, J.E., and Breaker, R.R. (2003). An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Mol Biol 10, 701–707.

    Article  CAS  Google Scholar 

  • Xu, B., Zhu, Y., Cao, C., Chen, H., Jin, Q., Li, G., Ma, J., Yang, S.L., Zhao, J., Zhu, J., et al. (2022). Recent advances in RNA structurome. Sci China Life Sci 65, 1285–1324.

    Article  CAS  Google Scholar 

  • Xue, X., Yongjun, W., and Zhihong, L. (2015). Folding of SAM-II riboswitch explored by replica-exchange molecular dynamics simulation. J Theor Biol 365, 265–269.

    Article  CAS  Google Scholar 

  • Xue, Y., Chen, R., Qu, L., and Cao, X. (2020). Noncoding RNA: from dark matter to bright star. Sci China Life Sci 63, 463–468.

    Article  Google Scholar 

  • Yang, J., Li, J., Wang, J., Sheng, G., Wang, M., Zhao, H., Yang, Y., and Wang, Y. (2020). Crystal structure of Cas1 in complex with branched DNA. Sci China Life Sci 63, 516–528.

    Article  CAS  Google Scholar 

  • Yao, Z., Barrick, J., Weinberg, Z., Neph, S., Breaker, R., Tompa, M., and Ruzzo, W.L. (2007). A computational pipeline for high-throughput discovery of cis-regulatory noncoding RNA in prokaryotes. PLoS Comput Biol 3, e126.

    Article  Google Scholar 

  • Zhang, K., Li, S., Kappel, K., Pintilie, G., Su, Z., Mou, T.C., Schmid, M.F., Das, R., and Chiu, W. (2019). Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat Commun 10, 5511.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32022039, 31870810, 91940302, 91640104), the National Key Research and Development Project of China (2021YFC2300300), the China Postdoctoral Science Foundation (2022M713637), the Outstanding Youth Fund of Zhejiang Province (LR19C050003), and the Fundamental Research Funds for the Central Universities (2017QN81010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiming Ren.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Song, Q., Xu, X. et al. Structure-based insights into recognition and regulation of SAM-sensing riboswitches. Sci. China Life Sci. 66, 31–50 (2023). https://doi.org/10.1007/s11427-022-2188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2188-7

Keywords

Navigation