Skip to main content
Log in

Chemical modulation of cell fates: in situ regeneration

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Chemical modulation of cell fates has been widely used to promote tissue and organ regeneration. Small molecules can target the self-renewal, expansion, differentiation, and survival of endogenous stem cells for enhancing their regenerative power or induce dedifferentiation or transdifferentiation of mature cells into proliferative progenitors or specialized cell types needed for regeneration. Here, we discuss current progress and potential using small molecules to promote in vivo regenerative processes by regulating the cell fate. Current studies of small molecules in regeneration will provide insights into developing safe and efficient chemical approaches for in situ tissue repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson, O., Adams, B.A., Yoo, D., Ellis, G.C., Gut, P., Anderson, R.M., German, M.S., and Stainier, D.Y.R. (2012). Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab 15, 885–894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Androutsellis-Theotokis, A., Leker, R.R., Soldner, F., Hoeppner, D.J., Ravin, R., Poser, S.W., Rueger, M.A., Bae, S.K., Kittappa, R., and Mc-Kay, R.D.G. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826.

    Article  PubMed  CAS  Google Scholar 

  • Annes, J.P., Hyoje Ryu, J., Lam, K., Carolan, P.J., Utz, K., Hollister-Lock, J., Arvanites, A.C., Rubin, L.L., Weir, G., and Melton, D.A. (2012). Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proc Natl Acad Sci USA 109, 3915–3920.

    Article  PubMed  Google Scholar 

  • Ashcroft, F.M., and Rorsman, P. (2012). Diabetes mellitus and the β cell: the last ten years. Cell 148, 1160–1171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azim, K., Angonin, D., Marcy, G., Pieropan, F., Rivera, A., Donega, V., Cantù, C., Williams, G., Berninger, B., Butt, A.M., et al. (2017). Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity. PLoS Biol 15, e2000698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Othman, N., Vieira, A., Courtney, M., Record, F., Gjernes, E., Avolio, F., Hadzic, B., Druelle, N., Napolitano, T., Navarro-Sanz, S., et al. (2017). Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell 168, 73–85.e11.

    Article  PubMed  CAS  Google Scholar 

  • Benthuysen, J.R., Carrano, A.C., and Sander, M. (2016). Advances in β cell replacement and regeneration strategies for treating diabetes. J Clin Investig 126, 3651–3660.

    Article  PubMed  Google Scholar 

  • Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324, 98–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boitano, A.E., Wang, J., Romeo, R., Bouchez, L.C., Parker, A.E., Sutton, S. E., Walker, J.R., Flaveny, C.A., Perdew, G.H., Denison, M.S., et al. (2010). Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bussel, J.B., Cheng, G., Saleh, M.N., Psaila, B., Kovaleva, L., Meddeb, B., Kloczko, J., Hassani, H., Mayer, B., Stone, N.L., et al. (2007). Eltrombopag for the treatment of chronic idiopathic thrombocytopenic purpura. N Engl J Med 357, 2237–2247.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, T.J., Choudhury, R.P., and Riley, P.R. (2017). Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov 16, 699–717.

    Article  PubMed  CAS  Google Scholar 

  • Cao, N., Huang, Y., Zheng, J., Spencer, C.I., Zhang, Y., Fu, J.D., Nie, B., Xie, M., Zhang, M., Wang, H., et al. (2016). Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352, 1216–1220.

    Article  PubMed  CAS  Google Scholar 

  • Chechneva, O.V., Mayrhofer, F., Daugherty, D.J., Krishnamurty, R.G., Bannerman, P., Pleasure, D.E., and Deng, W. (2014). A Smoothened receptor agonist is neuroprotective and promotes regeneration after ischemic brain injury. Cell Death Dis 5, e1481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, W.P., Liu, Y.H., Ho, Y.J., and Wu, S.M. (2015). Pharmacological inhibition of TGFβ receptor improves Nkx2.5 cardiomyoblast-mediated regeneration. Cardiovasc Res 105, 44–54.

    Article  PubMed  CAS  Google Scholar 

  • Christopherson, K.W., Hangoc, G., Mantel, C.R., and Broxmeyer, H.E. (2004). Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305, 1000–1003.

    Article  PubMed  CAS  Google Scholar 

  • Cottage, C.T., Bailey, B., Fischer, K.M., Avitabile, D., Avitable, D., Collins, B., Tuck, S., Quijada, P., Gude, N., Alvarez, R., et al. (2010). Cardiac progenitor cell cycling stimulated by pim-1 kinase. Circul Res 106, 891–901.

    Article  CAS  Google Scholar 

  • Crane, G.M., Jeffery, E., and Morrison, S.J. (2017). Adult haematopoietic stem cell niches. Nat Rev Immunol 17, 573–590.

    Article  PubMed  CAS  Google Scholar 

  • Degousee, N., Fazel, S., Angoulvant, D., Stefanski, E., Pawelzik, S.C., Korotkova, M., Arab, S., Liu, P., Lindsay, T.F., Zhuo, S., et al. (2008). Microsomal prostaglandin E2 synthase-1 deletion leads to adverse left ventricular remodeling after myocardial infarction. Circulation 117, 1701–1710.

    Article  PubMed  CAS  Google Scholar 

  • Del Re, D.P., and Sadoshima, J. (2012). Enhancing the potential of cardiac progenitor cells: pushing forward with Pim-1. Circul Res 110, 1154–1156.

    Article  CAS  Google Scholar 

  • Demcollari, T.I., Cujba, A.M., and Sancho, R. (2017). Phenotypic plasticity in the pancreas: new triggers, new players. Curr Opin Cell Biol 49, 38–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ebrahimi, B. (2017). In vivo reprogramming for heart regeneration: a glance at efficiency, environmental impacts, challenges and future directions. J Mol Cell Cardiol 108, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Engel, F.B., Hsieh, P.C.H., Lee, R.T., and Keating, M.T. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103, 15546–15551.

    Article  PubMed  CAS  Google Scholar 

  • English, A.W., Liu, K., Nicolini, J.M., Mulligan, A.M., and Ye, K. (2013). Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves. Proc Natl Acad Sci USA 110, 16217–16222.

    Article  PubMed  Google Scholar 

  • Fancy, S.P.J., Harrington, E.P., Yuen, T.J., Silbereis, J.C., Zhao, C., Baranzini, S.E., Bruce, C.C., Otero, J.J., Huang, E.J., Nusse, R., et al. (2011). Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14, 1009–1016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flomenberg, N., Devine, S.M., Dipersio, J.F., Liesveld, J.L., McCarty, J.M., Rowley, S.D., Vesole, D.H., Badel, K., and Calandra, G. (2005). The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106, 1867–1874.

    Article  PubMed  CAS  Google Scholar 

  • Florian, M.C., Dörr, K., Niebel, A., Daria, D., Schrezenmeier, H., Rojewski, M., Filippi, M.D., Hasenberg, A., Gunzer, M., Scharffetter-Kochanek, K., et al. (2012). Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10, 520–530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fomina-Yadlin, D., Kubicek, S., Walpita, D., Dancik, V., Hecksher-Sørensen, J., Bittker, J.A., Sharifnia, T., Shamji, A., Clemons, P.A., Wagner, B.K., et al. (2010). Small-molecule inducers of insulin expression in pancreatic β-cells. Proc Natl Acad Sci USA 107, 15099–15104.

    Article  PubMed  Google Scholar 

  • Frank-Kamenetsky, M., Zhang, X.M., Bottega, S., Guicherit, O., Wichterle, H., Dudek, H., Bumcrot, D., Wang, F.Y., Jones, S., Shulok, J., et al. (2002). Small-molecule modulators of Hedgehog signaling. J Biol 1, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frasch, M. (2016). Dedifferentiation, redifferentiation, and transdifferentiation of striated muscles during regeneration and development. Curr Top Dev Biol 116, 331–355.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y., Huang, C., Xu, X., Gu, H., Ye, Y., Jiang, C., Qiu, Z., and Xie, X. (2015). Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res 25, 1013–1024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gemberling, M., Bailey, T.J., Hyde, D.R., and Poss, K.D. (2013). The zebrafish as a model for complex tissue regeneration. Trends Genets 29, 611–620.

    Article  CAS  Google Scholar 

  • Green, E.M., and Lee, R.T. (2013). Proteins and small molecules for cellular regenerative medicine. Physiol Rev 93, 311–325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu, D., Wang, S., Zhang, S., Zhang, P., and Zhou, G. (2017). Directed transdifferentiation of Müller glial cells to photoreceptors using the sonic hedgehog signaling pathway agonist purmorphamine. Mol Med Rep 16, 7993–8002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gude, N., Muraski, J., Rubio, M., Kajstura, J., Schaefer, E., Anversa, P., and Sussman, M.A. (2006). Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circul Res 99, 381–388.

    Article  CAS  Google Scholar 

  • Hankenson, K.D., Gagne, K., and Shaughnessy, M. (2015). Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliver Rev 94, 3–12.

    Article  CAS  Google Scholar 

  • Hariharan, N., Quijada, P., Mohsin, S., Joyo, A., Samse, K., Monsanto, M., De La Torre, A., Avitabile, D., Ormachea, L., McGregor, M.J., et al. (2015). Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J Am College Cardiol 65, 133–147.

    Article  CAS  Google Scholar 

  • He, X., Zhang, L., Queme, L.F., Liu, X., Lu, A., Waclaw, R.R., Dong, X., Zhou, W., Kidd, G., Yoon, S.O., et al. (2018). A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med 24, 338–351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsueh, Y.C., Wu, J.M.F., Yu, C.K., Wu, K.K., and Hsieh, P.C.H. (2014). Prostaglandin E promotes post-infarction cardiomyocyte replenishment by endogenous stem cells. EMBO Mol Med 6, 496–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., and Srivastava, D. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ieronimakis, N., Pantoja, M., Hays, A.L., Dosey, T.L., Qi, J., Fischer, K.A., Hoofnagle, A.N., Sadilek, M., Chamberlain, J.S., Ruohola-Baker, H., et al. (2013). Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice. Skeletal Muscle 3, 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeon, O.H., and Elisseeff, J. (2016). Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Deliv Transl Res 6, 105–120.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K., Zhu, S., Tremblay, M.S., Payette, J.N., Wang, J., Bouchez, L. C., Meeusen, S., Althage, A., Cho, C.Y., Wu, X., et al. (2012). A stem cell-based approach to cartilage repair. Science 336, 717–721.

    Article  PubMed  CAS  Google Scholar 

  • Jopling, C., Boue, S., and Izpisua Belmonte, J.C. (2011). Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12, 79–89.

    Article  PubMed  CAS  Google Scholar 

  • Jung, D.W., and Williams, D.R. (2011). Novel chemically defined approach to produce multipotent cells from terminally differentiated tissue syncytia. ACS Chem Biol 6, 553–562.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, A., Morquette, B., Kroner, A., Leong, S.Y., Madwar, C., Sanz, R., Banerjee, S.L., Antel, J., Bisson, N., David, S., et al. (2017). Smallmolecule stabilization of 14-3-3 protein-protein interactions stimulates axon regeneration. Neuron 93, 1082–1093.e5.

    Article  PubMed  CAS  Google Scholar 

  • Khan, M., Mohsin, S., Avitabile, D., Siddiqi, S., Nguyen, J., Wallach, K., Quijada, P., McGregor, M., Gude, N., Alvarez, R., et al. (2013). β-Adrenergic regulation of cardiac progenitor cell death versus survival and proliferation. Circ Res 112, 476–486.

    Article  PubMed  CAS  Google Scholar 

  • Kim, W.H., Jung, D.W., Kim, J., Im, S.H., Hwang, S.Y., and Williams, D.R. (2012). Small molecules that recapitulate the early steps of urodele amphibian limb regeneration and confer multipotency. ACS Chem Biol 7, 732–743.

    Article  PubMed  CAS  Google Scholar 

  • Kusano, K., Ebara, S., Tachibana, K., Nishimura, T., Sato, S., Kuwaki, T., and Taniyama, T. (2004). A potential therapeutic role for small nonpeptidyl compounds that mimic human granulocyte colony-stimulating factor. Blood 103, 836–842.

    Article  PubMed  CAS  Google Scholar 

  • Kuter, D.J., and Begley, C.G. (2002). Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 100, 3457–3469.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C., Arnold, J., Hsiao, E.C., Taketo, M.M., Conklin, B.R., and Srivastava, D. (2007). Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA 104, 10894–10899.

    Article  PubMed  CAS  Google Scholar 

  • Lane, S.W., Williams, D.A., and Watt, F.M. (2014). Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32, 795–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurencin, C.T., Ashe, K.M., Henry, N., Kan, H.M., and Lo, K.W.H. (2014). Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discov Today 19, 794–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, J., Casteels, T., Frogne, T., Ingvorsen, C., Honoré, C., Courtney, M., Huber, K.V.M., Schmitner, N., Kimmel, R.A., Romanov, R.A., et al. (2017). Artemisinins target GABAA receptor signaling and impair α cell identity. Cell 168, 86–100.e15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, J., Yang, C., Xia, Y., Bertino, A., Glaspy, J., Roberts, M., and Kuter, D.J. (2001). Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 98, 3241–3248.

    Article  PubMed  CAS  Google Scholar 

  • Li, K., Zhu, S., Russ, H.A., Xu, S., Xu, T., Zhang, Y., Ma, T., Hebrok, M., and Ding, S. (2014). Small molecules facilitate the reprogramming of mouse fibroblasts into pancreatic lineages. Cell Stem Cell 14, 228–236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Lichtervelde, L., Boitano, A.E., Wang, Y., Krastel, P., Petersen, F., Cooke, M.P., and Schultz, P.G. (2013). Eupalinilide E inhibits erythropoiesis and promotes the expansion of hematopoietic progenitor cells. ACS Chem Biol 8, 866–870.

    Article  PubMed  CAS  Google Scholar 

  • Liles, W.C., Broxmeyer, H.E., Rodger, E., Wood, B., Hübel, K., Cooper, S., Hangoc, G., Bridger, G.J., Henson, G.W., Calandra, G., et al. (2003). Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102, 2728–2730.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S.C., Dollé, P., Ryckebüsch, L., Noseda, M., Zaffran, S., Schneider, M. D., and Niederreither, K. (2010). Endogenous retinoic acid regulates cardiac progenitor differentiation. Proc Natl Acad Sci USA 107, 9234–9239.

    Article  PubMed  Google Scholar 

  • Lyssiotis, C.A., Lairson, L.L., Boitano, A.E., Wurdak, H., Zhu, S., and Schultz, P.G. (2011). Chemical control of stem cell fate and developmental potential. Angew Chem Int Ed 50, 200–242.

    Article  CAS  Google Scholar 

  • Ma, T.C., Campana, A., Lange, P.S., Lee, H.H., Banerjee, K., Bryson, J.B., Mahishi, L., Alam, S., Giger, R.J., Barnes, S., et al. (2010). A largescale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway. J Neurosci 30, 739–748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matrone, G., Tucker, C.S., and Denvir, M.A. (2017). Cardiomyocyte proliferation in zebrafish and mammals: lessons for human disease. Cell Mol Life Sci 74, 1367–1378.

    Article  PubMed  CAS  Google Scholar 

  • Mei, F., Mayoral, S.R., Nobuta, H., Wang, F., Desponts, C., Lorrain, D.S., Xiao, L., Green, A.J., Rowitch, D., Whistler, J., et al. (2016). Identification of the kappa-opioid receptor as a therapeutic target for oligodendrocyte remyelination. J Neurosci 36, 7925–7935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendelson, A., and Frenette, P.S. (2014). Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20, 833–846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merrell, A.J., and Stanger, B.Z. (2016). Adult cell plasticity in vivo: dedifferentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17, 413–425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohamed, T.M.A., Stone, N.R., Berry, E.C., Radzinsky, E., Huang, Y., Pratt, K., Ang, Y.S., Yu, P., Wang, H., Tang, S., et al. (2017). Chemical enhancement of in vitro and in vivo direct cardiac reprogramming clinical perspective. Circulation 135, 978–995.

    Article  PubMed  CAS  Google Scholar 

  • Mohsin, S., Khan, M., Nguyen, J., Alkatib, M., Siddiqi, S., Hariharan, N., Wallach, K., Monsanto, M., Gude, N., Dembitsky, W., et al. (2013). Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circul Res 113, 1169–1179.

    Article  CAS  Google Scholar 

  • Mosqueira, D., Pagliari, S., Uto, K., Ebara, M., Romanazzo, S., Escobedo-Lucea, C., Nakanishi, J., Taniguchi, A., Franzese, O., Di Nardo, P., et al. (2014). Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano 8, 2033–2047.

    Article  PubMed  CAS  Google Scholar 

  • Murry, C.E., and Pu, W.T. (2011). Reprogramming fibroblasts into cardiomyocytes. N Engl J Med 364, 177–178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neidhart, J., Mangalik, A., Kohler, W., Stidley, C., Saiki, J., Duncan, P., Souza, L., and Downing, M. (1989). Granulocyte colony-stimulating factor stimulates recovery of granulocytes in patients receiving doseintensive chemotherapy without bone marrow transplantation. J Clin Oncol 7, 1685–1692.

    Article  PubMed  CAS  Google Scholar 

  • Németh, Z.H., Bleich, D., Csóka, B., Pacher, P., Mabley, J.G., Himer, L., Vizi, E.S., Deitch, E.A., Szabó, C., Cronstein, B.N., and Haskó, G. (2007). Adenosine receptor activation ameliorates type 1 diabetes. FASEB J 21, 2379–2388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orth, P., Cucchiarini, M., Wagenpfeil, S., Menger, M.D., and Madry, H. (2014). PTH [1-34]-induced alterations of the subchondral bone provoke early osteoarthritis. Osteoarthritis Cartilage 22, 813–821.

    Article  PubMed  CAS  Google Scholar 

  • Otte, A.P., van Run, P., Heideveld, M., van Driel, R., and Durston, A.J. (1989). Neural induction is mediated by cross-talk between the protein kinase C and cyclic AMP pathways. Cell 58, 641–648.

    Article  PubMed  CAS  Google Scholar 

  • Pacelli, S., Basu, S., Whitlow, J., Chakravarti, A., Acosta, F., Varshney, A., Modaresi, S., Berkland, C., and Paul, A. (2017). Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliver Rev 120, 50–70.

    Article  CAS  Google Scholar 

  • Pajcini, K.V., Corbel, S.Y., Sage, J., Pomerantz, J.H., and Blau, H.M. (2010). Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7, 198–213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paliwal, P., and Conboy, I.M. (2011). Inhibitors of tyrosine phosphatases and apoptosis reprogram lineage-marked differentiated muscle to myogenic progenitor cells. Chem Biol 18, 1153–1166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papapetrou, E.P. (2016). Induced pluripotent stem cells, past and future. Science 353, 991–992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, G., Yoon, B.S., Kim, Y.S., Choi, S.C., Moon, J.H., Kwon, S., Hwang, J., Yun, W., Kim, J.H., Park, C.Y., et al. (2015). Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials 54, 201–212.

    Article  PubMed  CAS  Google Scholar 

  • de Pater, E., Ciampricotti, M., Priller, F., Veerkamp, J., Strate, I., Smith, K., Lagendijk, A.K., Schilling, T.F., Herzog, W., Abdelilah-Seyfried, S., et al. (2012). Bmp signaling exerts opposite effects on cardiac differentiation. Circul Res 110, 578–587.

    Article  CAS  Google Scholar 

  • Porrello, E.R., Mahmoud, A.I., Simpson, E., Hill, J.A., Richardson, J.A., Olson, E.N., and Sadek, H.A. (2011). Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian, L., Huang, Y., Spencer, C.I., Foley, A., Vedantham, V., Liu, L., Conway, S.J., Fu, J.D., and Srivastava, D. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qyang, Y., Martin-Puig, S., Chiravuri, M., Chen, S., Xu, H., Bu, L., Jiang, X., Lin, L., Granger, A., Moretti, A., et al. (2007). The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a wnt/β-catenin pathway. Cell Stem Cell 1, 165–179.

    Article  PubMed  CAS  Google Scholar 

  • Racioppi, L., Lento, W., Huang, W., Arvai, S., Doan, P.L., Harris, J.R., Marcon, F., Nakaya, H.I., Liu, Y., and Chao, N. (2017). Calcium/calmodulin-dependent kinase kinase 2 regulates hematopoietic stem and progenitor cell regeneration. Cell Death Dis 8, e3076.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez, P., Rettig, M.P., Uy, G.L., Deych, E., Holt, M.S., Ritchey, J.K., and DiPersio, J.F. (2009). BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 114, 1340–1343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rennekamp, A.J., and Peterson, R.T. (2015). 15 years of zebrafish chemical screening. Curr Opin Chem Biol 24, 58–70.

    Article  PubMed  CAS  Google Scholar 

  • Rosania, G.R., Chang, Y.T., Perez, O., Sutherlin, D., Dong, H., Lockhart, D.J., and Schultz, P.G. (2000). Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol 18, 304–308.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J.L., Goetsch, S.C., Aguilar, H.R., Frantz, D.E., and Schneider, J. W. (2012). Targeting native adult heart progenitors with cardiogenic small molecules. ACS Chem Biol 7, 1067–1076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakami, S., Etter, P., and Reh, T.A. (2008). Activin signaling limits the competence for retinal regeneration from the pigmented epithelium. Mech Dev 125, 106–116.

    Article  PubMed  CAS  Google Scholar 

  • Samara, C., Rohde, C.B., Gilleland, C.L., Norton, S., Haggarty, S.J., and Yanik, M.F. (2010). Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc Natl Acad Sci USA 107, 18342–18347.

    Article  PubMed  Google Scholar 

  • Sampson, E.R., Hilton, M.J., Tian, Y., Chen, D., Schwarz, E.M., Mooney, R.A., Bukata, S.V., O’Keefe, R.J., Awad, H., Puzas, J.E., et al. (2011). Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med 3, 101ra93.

    Article  CAS  Google Scholar 

  • Sánchez Alvarado, A., and Yamanaka, S. (2014). Rethinking differentiation. Cell 157, 110–119.

    Article  PubMed  CAS  Google Scholar 

  • Saraswati, S., Alfaro, M.P., Thorne, C.A., Atkinson, J., Lee, E., and Young, P.P. (2010). Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS ONE 5, e15521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki, T., Hwang, H., Nguyen, C., Kloner, R.A., and Kahn, M. (2013). The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium. PLoS ONE 8, e75010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L., Yang, V.K., Cai, L., Wang, M., Wu, T.D., Guerquin-Kern, J.L., Lechene, C.P., and Lee, R.T. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436.

    Article  PubMed  CAS  Google Scholar 

  • Shen, W., Tremblay, M.S., Deshmukh, V.A., Wang, W., Filippi, C.M., Harb, G., Zhang, Y., Kamireddy, A., Baaten, J.E., Jin, Q., et al. (2013). Smallmolecule inducer of β cell proliferation identified by high-throughput screening. J Am Chem Soc 135, 1669–1672.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, W.P., Wolf, M., Lusk, J., Layton, J.E., Souza, L., Morstyn, G., Dodds, A., Maher, D., Green, M.D., and Fox, R.M. (1989). Granulocyte colony-stimulating factor and neutrophil recovery after high-dose chemotherapy and autologous bone marrow transplantation. Lancet 334, 891–895.

    Article  Google Scholar 

  • Smith, A.M., Maguire-Nguyen, K.K., Rando, T.A., Zasloff, M.A., Strange, K.B., and Yin, V.P. (2017). The protein tyrosine phosphatase 1B inhibitor MSI-1436 stimulates regeneration of heart and multiple other tissues. NPJ Regen Med 2, 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, K., Nam, Y.J., Luo, X., Qi, X., Tan, W., Huang, G.N., Acharya, A., Smith, C.L., Tallquist, M.D., Neilson, E.G., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sundararaman, B., Avitabile, D., Konstandin, M.H., Cottage, C.T., Gude, N., and Sussman, M.A. (2012). Asymmetric chromatid segregation in cardiac progenitor cells is enhanced by Pim-1 kinase. Circul Res 110, 1169–1173.

    Article  CAS  Google Scholar 

  • Taguchi, J., and Yamada, Y. (2017). In vivo reprogramming for tissue regeneration and organismal rejuvenation. Curr Opin Genet Dev 46, 132–140.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, E.M. (2016). The molecular and cellular choreography of appendage regeneration. Cell 165, 1598–1608.

    Article  PubMed  CAS  Google Scholar 

  • Tappeiner, C., Maurer, E., Sallin, P., Bise, T., Enzmann, V., and Tschopp, M. (2016). Inhibition of the TGFβ pathway enhances retinal regeneration in adult zebrafish. PLoS ONE 11, e0167073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theiss, H.D., Gross, L., Vallaster, M., David, R., Brunner, S., Brenner, C., Nathan, P., Assmann, G., Mueller-Hoecker, J., Vogeser, M., et al. (2013). Antidiabetic gliptins in combination with G-CSF enhances myocardial function and survival after acute myocardial infarction. Int J Cardiol 168, 3359–3369.

    Article  PubMed  Google Scholar 

  • Ti, D., Hao, H., Fu, X., and Han, W. (2016). Mesenchymal stem cellsderived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci 59, 1305–1312.

    Article  PubMed  CAS  Google Scholar 

  • Tian, S.S., Lamb, P., King, A.G., Miller, S.G., Kessler, L., Luengo, J.I., Averill, L., Johnson, R.K., Gleason, J.G., Pelus, L.M., et al. (1998). A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor. Science 281, 257–259.

    Article  PubMed  CAS  Google Scholar 

  • Tönges, L., Frank, T., Tatenhorst, L., Saal, K.A., Koch, J.C., Szego, É.M., Bähr, M., Weishaupt, J.H., and Lingor, P. (2012). Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain 135, 3355–3370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tornini, V.A., and Poss, K.D. (2014). Keeping at arm’s length during regeneration. Dev Cell 29, 139–145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trounson, A., and McDonald, C. (2015). Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Tseng, A.S., Beane, W.S., Lemire, J.M., Masi, A., and Levin, M. (2010). Induction of vertebrate regeneration by a transient sodium current. J Neurosci 30, 13192–13200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tseng, A.S., Engel, F.B., and Keating, M.T. (2006). The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 13, 957–963.

    Article  PubMed  CAS  Google Scholar 

  • Uccelli, A., Moretta, L., and Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nat Rev Immunol 8, 726–736.

    Article  PubMed  CAS  Google Scholar 

  • Uosaki, H., Magadum, A., Seo, K., Fukushima, H., Takeuchi, A., Nakagawa, Y., Moyes, K.W., Narazaki, G., Kuwahara, K., Laflamme, M., et al. (2013). Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells. Circul Cardiovasc Genet 6, 624–633.

    Article  CAS  Google Scholar 

  • Wang, H., and Simon, A. (2016). Skeletal muscle dedifferentiation during salamander limb regeneration. Curr Opin Genet Dev 40, 108–112.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P., Alvarez-Perez, J.C., Felsenfeld, D.P., Liu, H., Sivendran, S., Bender, A., Kumar, A., Sanchez, R., Scott, D.K., Garcia-Ocaña, A., et al. (2015a). A high-throughput chemical screen reveals that harminemediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med 21, 383–388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, W., Walker, J.R., Wang, X., Tremblay, M.S., Lee, J.W., Wu, X., and Schultz, P.G. (2009). Identification of small-molecule inducers of pancreatic β-cell expansion. Proc Natl Acad Sci USA 106, 1427–1432.

    Article  PubMed  Google Scholar 

  • Wang, W.E., Li, L., Xia, X., Fu, W., Liao, Q., Lan, C., Yang, D., Chen, H., Yue, R., Zeng, C., et al. (2017). Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 136, 834–848.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Zhu, S., Jiang, X., Li, Y., Song, D., and Hu, J. (2015b). Systemic administration of lithium improves distracted bone regeneration in rats. Calcif Tissue Int 96, 534–540.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Ding, S., Ding, Q., Gray, N.S., and Schultz, P.G. (2002). A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J Am Chem Soc 124, 14520–14521.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Y., Song, W., Zhao, W., Gao, Y., Shang, J., Hao, P., Yang, Z., Duan, H., and Li, X. (2018). Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation. Sci China Life Sci 61, 559–568.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J., Du, Y., and Deng, H. (2015). Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119–134.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J., Lacoske, M.H., and Theodorakis, E.A. (2014). Neurotrophic natural products: chemistry and biology. Angew Chem Int Ed 53, 956–987.

    Article  CAS  Google Scholar 

  • Yuen, T.J., Johnson, K.R., Miron, V.E., Zhao, C., Quandt, J., Harrisingh, M. C., Swire, M., Williams, A., McFarland, H.F., Franklin, R.J.M., et al. (2013). Identification of endothelin 2 as an inflammatory factor that promotes central nervous system remyelination. Brain 136, 1035–1047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaruba, M.M., Theiss, H.D., Vallaster, M., Mehl, U., Brunner, S., David, R., Fischer, R., Krieg, L., Hirsch, E., Huber, B., et al. (2009). Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4, 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Liu, J., Huang, Y., Chang, J.Y.F., Liu, L., McKeehan, W.L., Martin, J.F., and Wang, F. (2012a). FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circul Res 110, e29–e39.

    CAS  Google Scholar 

  • Zhang, Y., Li, W., Laurent, T., and Ding, S. (2012b). Small molecules, big roles—the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci 125, 5609–5620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, A., Qin, H., and Fu, X. (2016). What determines the regenerative capacity in animals? Bioscience 66, 735–746.

    Article  Google Scholar 

  • Zhao, Y., Londono, P., Cao, Y., Sharpe, E.J., Proenza, C., O’Rourke, R., Jones, K.L., Jeong, M.Y., Walker, L.A., Buttrick, P.M., et al. (2015). High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun 6, 8243.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81721092) and the National Key R&D Program of China (2017YFC1103304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Zhao, A. & Fu, X. Chemical modulation of cell fates: in situ regeneration. Sci. China Life Sci. 61, 1137–1150 (2018). https://doi.org/10.1007/s11427-018-9349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9349-5

Keywords

Navigation