Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Life Sciences
  3. Article

A PKS gene, pks-1, is involved in chaetoglobosin biosynthesis, pigmentation and sporulation in Chaetomium globosum

  • Research Paper
  • Open access
  • Published: 12 December 2012
  • Volume 55, pages 1100–1108, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Science China Life Sciences Aims and scope Submit manuscript
A PKS gene, pks-1, is involved in chaetoglobosin biosynthesis, pigmentation and sporulation in Chaetomium globosum
Download PDF
  • Yang Hu1,
  • XiaoRan Hao1,
  • Jing Lou1,
  • Ping Zhang1,
  • Jiao Pan1 &
  • …
  • XuDong Zhu1 
  • 2056 Accesses

  • Explore all metrics

Abstract

Chaetomium globosum is one of the most common fungi in nature. It is best known for producing chaetoglobosins; however, the molecular basis of chaetoglobosin biosynthesis is poorly understood in this fungus. In this study, we utilized RNA interference (RNAi) to characterize a polyketide synthase gene, pks-1, in C. globosum that is involved in the production of chaetoglobosin A. When pks-1 was knocked down by RNAi, the production of chaetoglobosin A dramatically decreased. Knock-down mutants also displayed a pigment-deficient phenotype. These results suggest that the two polyketides, melanin and chaetoglobosin, are likely to share common biosynthetic steps. Most importantly, we found that pks-1 also plays a critical role in sporulation. The silenced mutants of pks-1 lost the ability to produce spores. We propose that polyketides may modulate cellular development via an unidentified action. We also suggest that C. globosum pks-1 is unique because of its triple role in melanin formation, chaetoglobosin biosynthesis and sporulation. This work may shed light on chaetoglobosin biosynthesis and indicates a relationship between secondary metabolism and fungal morphogenesis.

Article PDF

Download to read the full article text

Similar content being viewed by others

Genetic and functional analysis of the Zn(II)2Cys6 transcription factor HADA-1 in Hypsizygus marmoreus

Article 06 March 2021

The function of a conidia specific transcription factor CsgA in Aspergillus nidulans

Article Open access 16 September 2022

A polyketide synthase from Verticillium dahliae modulates melanin biosynthesis and hyphal growth to promote virulence

Article Open access 30 May 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Straus D C. The possible role of fungal contamination in sick building syndrome. Front Biosci (Elite Ed), 2011, 3: 562–580

    Article  Google Scholar 

  2. Paterson P J, Seaton S, Yeghen T, et al. Molecular confirmation of invasive infection caused by Chaetomium globosum. J Clin Pathol, 2005, 58: 334

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Inglis G D, Kawchuk L M. Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol, 2002, 48: 60–70

    Article  PubMed  CAS  Google Scholar 

  4. Qi G, Lan N, Ma X, et al. Controlling Myzus persicae with recom-binant endophytic fungi chaetomium globosum expressing Pinellia ternata agglutinin: Using recombinant endophytic fungi to control aphids. J Appl Microbiol, 2011, 110: 1314–1322

    Article  PubMed  CAS  Google Scholar 

  5. Longoni P, Rodolfi M, Pantaleoni L, et al. Functional analysis of the degradation of cellulosic substrates by a chaetomium globosum endophytic isolate. Appl Environ Microbiol, 2012, 78: 3693–3705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Fogle M R, Douglas D R, Jumper C A, et al. Growth and mycotoxin production by chaetomium globosum. Mycopathologia, 2007, 164: 49–56

    Article  PubMed  CAS  Google Scholar 

  7. Sutton D A, Slifkin M, Yakulis R, et al. U.S. case report of cerebral phaeohyphomycosis caused by Ramichloridium obovoideum (R. mackenziei): Criteria for identification, therapy, and review of other known dematiaceous neurotropic taxa. J Clin Microbiol, 1998, 36: 708–715

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Kapoor N, Tyagi M, Kumar H, et al. Production of cellulose enzyme by Chaetomium sp. using wheat straw in solid state fermentation. Res J Microbio, 2010, 5: 1199–1206

    Article  CAS  Google Scholar 

  9. Qin J C, Zhang Y M, Gao J M, et al. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett, 2009, 19: 1572–1574

    Article  PubMed  CAS  Google Scholar 

  10. Natori S, Yahara I, eds. Cytochalasins in Mycotoxins and Phytoalexins. Boca Raton: CRC Press, 1991

    Google Scholar 

  11. Umeda M, Ohtsubo K, Saito M, et al. Cytotoxicity of new cyto-chalasans from Chaetomium globosum. Experientia, 1975, 31: 435–438

    Article  PubMed  CAS  Google Scholar 

  12. Ohtsubo K, Saito M, Sekita S, et al. Acute toxic effects of chaetoglobosin A, a new cytochalasan compound produced by Chaetomium globosum, on mice and rats. Jpn J Exp Med, 1978, 48: 105–110

    PubMed  CAS  Google Scholar 

  13. Jiao W, Feng Y, Blunt J W, et al. Chaetoglobosins Q, R, and T, three further new metabolites from Chaetomium globosum. J Nat Prod, 2004, 67: 1722–1725

    Article  PubMed  CAS  Google Scholar 

  14. Probst A, Tamm C. 19-O-acetylchaetoglobosin B and 19-O-acetylchae-toglobosin D, two new metabolites of Chaetomium globosum. Helv Chim Acta, 1981, 64: 2065–2077

    Article  CAS  Google Scholar 

  15. Scherlach K, Boettger D, Remme N, et al. The chemistry and biology of cytochalasans. Nat Prod Rep, 2010, 27: 869–886

    Article  PubMed  CAS  Google Scholar 

  16. Brakhage A A, Schuemann J, Bergmann S, et al. Activation of fungal silent gene clusters: A new avenue to drug discovery. Prog Drug Res, 2008, 66:1, 3–12

    Google Scholar 

  17. Georgianna D R, Payne G A. Genetic regulation of aflatoxin biosynthesis: From gene to genome. Fungal Genet Biol, 2009, 46: 113–125

    Article  PubMed  CAS  Google Scholar 

  18. Yang G, Rose M S, Turgeon B G, et al. A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. The Plant cell, 1996, 8: 2139–2150

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Wu D, Oide S, Zhang N, et al. ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathog, 8: e1002542

  20. Kennedy J, Auclair K, Kendrew S G, et al. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science, 1999, 284: 1368–1372

    Article  PubMed  CAS  Google Scholar 

  21. Abe Y, Suzuki T, Ono C, et al. Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol Genet Genomics, 2002, 267: 636–646

    Article  PubMed  CAS  Google Scholar 

  22. Zhang A, Lu P, Dahl-Roshak A M, et al. Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Genet Genomics, 2003, 268: 645–655

    PubMed  CAS  Google Scholar 

  23. Bok J W, Balajee S A, Marr K A, et al. LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell, 2005, 4: 1574–1582

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Bok J W, Keller N P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell, 2004, 3: 527–535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Bayram O, Krappmann S, Ni M, et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 2008, 320: 1504–1506

    Article  PubMed  CAS  Google Scholar 

  26. Nakayashiki H. RNA silencing in fungi: mechanisms and applications. FEBS Lett, 2005, 579: 5950–5957

    Article  PubMed  CAS  Google Scholar 

  27. Nakayashiki H, Hanada S, Nguyen B Q, et al. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol, 2005, 42: 275–283

    Article  PubMed  CAS  Google Scholar 

  28. Salame T M, Ziv C, Hadar Y, et al. RNAi as a potential tool for biotechnological applications in fungi. Appl Microbio Biot, 2011, 89: 501–512

    Article  CAS  Google Scholar 

  29. Janbon G, Maeng S, Yang D H, et al. Characterizing the role of RNA silencing components in Cryptococcus neoformans. Fungal Genet Biol, 2010, 47: 1070–1080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Moriwaki A, Katsube H, Ueno M, et al. Cloning and characterization of the BLR2, the homologue of the blue-light regulator of Neurospora crassa WC-2, in the phytopathogenic fungus Bipolaris oryzae. Curr Microbiol, 2008, 56: 115–121

    Article  PubMed  CAS  Google Scholar 

  31. McDonald T, Brown D, Keller N P, et al. RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe In, 2005, 18: 539–545

    Article  CAS  Google Scholar 

  32. Leng Y, Wu C, Liu Z, et al. RNA-mediated gene silencing in the cereal fungal pathogen Cochliobolus sativus. Mol Plant Pathol, 2011, 12: 289–298

    Article  PubMed  CAS  Google Scholar 

  33. Engh I, Nowrousian M, Kück U. Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora. FEMS Microbiol Lett, 2007, 275: 62–70

    Article  PubMed  CAS  Google Scholar 

  34. Moriwaki A, Kihara J, Kobayashi T, et al. Insertional mutagenesis and characterization of a polyketide synthase gene (pks1) required for melanin biosynthesis in Bipolaris oryzae. FEMS Microbiol Lett, 2004, 238: 1–8

    PubMed  CAS  Google Scholar 

  35. Takano Y, Kubo Y, Shimizu K, et al. Structural analysis of pks1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol Gen Genet, 1995, 249: 162–167

    Article  PubMed  CAS  Google Scholar 

  36. Turgeon B G, Garber R C, Yoder O C. Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol, 1987, 7: 3297–3305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Raeder U, Broda P. Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol, 1985, 1: 17–20

    Article  CAS  Google Scholar 

  38. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402–408

    Article  PubMed  CAS  Google Scholar 

  39. Anand S, Prasad M V, Yadav G, et al. Sbspks: Structure based sequence analysis of polyketide synthases. Nucleic Acids Res, 2010, 38: W487–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Hopwood D A, Sherman D H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet, 1990, 24: 37–66

    Article  PubMed  CAS  Google Scholar 

  41. Schumann J, Hertweck C. Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc, 2007, 129: 9564–9565

    Article  PubMed  Google Scholar 

  42. Brakhage A A, Schroeckh V. Fungal secondary metabolites-strategies to activate silent gene clusters. Fungal Genet Biol, 2011, 48: 15–22

    Article  PubMed  CAS  Google Scholar 

  43. Wheeler M H, Bell A A. Melanins and their importance in pathogenic fungi. Curr Top Med Mycol, 1988, 2: 338–387

    Article  PubMed  CAS  Google Scholar 

  44. Chang S S, Zhang Z, Liu Y. RNA interference pathways in fungi: Mechanisms and functions. Annu Rev Microbiol, 2012, 66: 305–323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Tanguay P, Bozza S, Breuil C. Assessing RNAi frequency and efficiency in Ophiostoma floccosum and O. piceae. Fungal Genet Biol, 2006, 43: 804–812

    Article  PubMed  CAS  Google Scholar 

  46. Liu H, Cottrell T R, Pierini L M, et al. RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics, 2002, 160: 463–470

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Feng B, Wang X, Hauser M, et al. Molecular cloning and charac-terization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Infect Immun, 2001, 69: 1781–1794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Takano Y, Kubo Y, Shimizu K, et al. Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol Gen Genet, 1995, 249: 162–167

    Article  PubMed  CAS  Google Scholar 

  49. Calvo A M, Wilson R A, Bok J W, et al. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev, 2002, 66: 447–459

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Grosse C, Heinekamp T, Kniemeyer O, et al. Protein kinase A regulates growth, sporulation, and pigment formation in Aspergillus fumigatus. Appl Environ Microbiol, 2008, 74: 4923–4933

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Shimizu K, Keller N P. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics, 2001, 157: 591–600

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Takano Y, Kikuchi T, Kubo Y, et al. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant Microbe Interact, 2000, 13: 374–383

    Article  PubMed  CAS  Google Scholar 

  53. Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact, 1999, 12: 59–63

    Article  PubMed  CAS  Google Scholar 

  54. Wolf J C, Mirocha C J. Regulation of sexual reproduction in Gibberella zeae (Fusarium roxeum “graminearum”) by F-2 (Zearalenone). Can J Microbiol, 1973, 19: 725–734

    Article  PubMed  CAS  Google Scholar 

  55. Schimmel T G, Coffman A D, Parsons S J. Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Appl Environ Microbiol, 1998, 64: 3707–3712

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Zhou R, Rasooly R, Linz J E. Isolation and analysis of fluP, a gene associated with hyphal growth and sporulation in Aspergillus parasiticus. Mol Gen Genet, 2000, 264: 514–520

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China

    Yang Hu, XiaoRan Hao, Jing Lou, Ping Zhang, Jiao Pan & XuDong Zhu

Authors
  1. Yang Hu
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. XiaoRan Hao
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Jing Lou
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Ping Zhang
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Jiao Pan
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. XuDong Zhu
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to XuDong Zhu.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Hu, Y., Hao, X., Lou, J. et al. A PKS gene, pks-1, is involved in chaetoglobosin biosynthesis, pigmentation and sporulation in Chaetomium globosum. Sci. China Life Sci. 55, 1100–1108 (2012). https://doi.org/10.1007/s11427-012-4409-5

Download citation

  • Received: 28 August 2012

  • Accepted: 29 October 2012

  • Published: 12 December 2012

  • Issue Date: December 2012

  • DOI: https://doi.org/10.1007/s11427-012-4409-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • polyketide synthase (PKS)
  • melanin
  • chaetoglobosin A
  • Chaetomium globosum
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature