Skip to main content
Log in

What we have learned from transcript profile analyses of male and female gametes in flowering plants

  • Reviews
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Double fertilization is one of the predominant features of sexual reproduction in flowering plants but, because of the physical inaccessibility of gametes, the essential molecular mechanisms in these processes are largely unknown. Based on the techniques for isolating highly purified gametes from several species and well-developed methods for manipulating RNA from limited quantities of gametes, genome-wide investigations of gamete transcription profiles were recently conducted in flowering plants. In this review, we survey the accumulated knowledge on gamete collection and purification, cDNA library construction, and transcript profile analysis to assess our understanding of the molecular mechanisms of gamete specialization and fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weterings K, Russell S D. Experimental analysis of the fertilization process. Plant Cell, 2004, 16(Suppl): S107–118, 1:CAS:528:DC%2BD2cXlsFWltLg%3D, 10.1105/tpc.016873, 15010512

    Article  Google Scholar 

  2. Boavida L C, Vieira A M, Becker J D, et al. Gametophyte interaction and sexual reproduction: How plants make a zygote. Int J Dev Biol, 2005, 49: 615–632, 10.1387/ijdb.052023lb, 16096969

    Article  Google Scholar 

  3. Lord E M, Russell S D. The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol, 2002, 18: 81–105, 1:CAS:528:DC%2BD38XptVOru7k%3D, 10.1146/annurev.cellbio.18.012502.083438, 12142268

    Article  Google Scholar 

  4. Russell S D. The egg cell: Development and role in fertilization and early embryogenesis. Plant Cell, 1993, 5: 1349–1359, 10.1105/tpc.5.10.1349, 12271034

    Article  Google Scholar 

  5. Yadegari R, Drews G N. Female gametophyte development. Plant Cell, 2004, 16(Suppl): S133–141, 1:CAS:528:DC%2BD2cXlsFWltLY%3D, 10.1105/tpc.018192, 15075395

    Article  Google Scholar 

  6. McCormick S. Male gametophyte development. Plant Cell, 1993, 5: 1265–1275, 10.1105/tpc.5.10.1265, 12271026

    Article  Google Scholar 

  7. Eady C, Lindsey K, Twell D. The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell, 1995, 7: 65–74, 1:CAS:528:DyaK2MXjsVyjsbo%3D, 10.1105/tpc.7.1.65, 12242352

    Article  Google Scholar 

  8. McCormick S. Control of male gametophyte development. Plant Cell, 2004, 16(Suppl): S142–153, 1:CAS:528:DC%2BD2cXlsFWltLc%3D, 10.1105/tpc.016659, 15037731

    Article  Google Scholar 

  9. Mól R, Filek M, Machackova I, et al. Ethylene synthesis and auxin augmentation in pistil tissues are important for egg cell differentiation after pollination in maize. Plant Cell Physiol, 2004, 45: 1396–1405, 10.1093/pcp/pch167, 15564523

    Article  Google Scholar 

  10. Theunis C H, Pierson E S, Cresti M. Isolation of male and female gametes in higher plants. Sex Plant Reprod, 1991, 4: 145–154, 10.1007/BF00189998

    Article  Google Scholar 

  11. Russell S D. Isolation and characterization of sperm cells in flowering plants. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 189–204, 1:CAS:528:DyaK3MXltFSmsrg%3D, 10.1146/annurev.pp.42.060191.001201

    Article  Google Scholar 

  12. Cass D D. An ultrastructural and Nomarski-interference study of the sperms of barley. Can J Bot, 1991, 51: 601–605, 10.1139/b73-072

    Article  Google Scholar 

  13. Russell S D. Isolation of sperm cells from the pollen of Plumbago zeylanica. Plant Physiol, 1986, 81: 317–319, 1:STN:280:DC%2BC3cnhs12ltg%3D%3D, 10.1104/pp.81.1.317, 16664799

    Article  Google Scholar 

  14. Matthys-Rochon E, Vergne P, Detchepare S, et al. Male germ unit isolation from three tricellular pollen species: Brassica oleracea, Zea mays, and Triticum aestivum. Plant Physiol, 1987, 83: 464–466, 1:STN:280:DC%2BC3cnhslCgtg%3D%3D, 10.1104/pp.83.3.464, 16665270

    Article  Google Scholar 

  15. Dupuis I, Roeckel P, Matthys-Rochon E, et al. Procedure to isolate viable sperm cells from corn (Zea mays L.) pollen grains. Plant Physiol, 1987, 85: 876–878, 1:STN:280:DC%2BC3cnhsl2rsQ%3D%3D, 10.1104/pp.85.4.876, 16665823

    Article  Google Scholar 

  16. Gou X P, Xu Y, Tang L, et al. Representative cDNA library from isolated rice sperm cells. Acta Bot Sin, 2001, 43: 1093–1096, 1:CAS:528:DC%2BD3MXptFehtrk%3D

    Google Scholar 

  17. Cass D D, Hough T, Knox R B, et al. Isolation of sperms from pollen of corn and oilseed rape. Plant Physiol, 1986, 80: s–130

    Google Scholar 

  18. Hough T, Singh M B, Smart I J, et al. Immunofluorescent screening of monoclonal antibodies to surface antigens of animal and plant cells bound to polycarbonate membranes. J Immunol Methods, 1986, 92: 103–107, 1:STN:280:DyaL28zgsFyktQ%3D%3D, 10.1016/0022-1759(86)90509-0, 3528295

    Article  Google Scholar 

  19. Southworth D. Knox R B. Flowering plant sperm cells: Isolation from pollen of Gerbera jamesonii (Asteraceae). Plant Sci, 1989, 60: 273–277, 10.1016/0168-9452(89)90177-5

    Article  Google Scholar 

  20. Shivanna K R, Xu H, Taylor P, et al. Isolation of sperms from the pollen tubes of flowering plants during fertilization. Plant Physiol, 1988, 87: 647–650, 1:STN:280:DC%2BC3cnhvVemtQ%3D%3D, 10.1104/pp.87.3.647, 16666200

    Article  Google Scholar 

  21. Cao Y, Reece A, Russell S D. Isolation of viable sperm cells from tobacco (Nicotiana tabacum). Zygote, 1996, 4: 81–84, 1:STN:280:DyaK2s%2FntVSnsg%3D%3D, 10.1017/S096719940000294X, 8913020

    Article  Google Scholar 

  22. Ye L, Lv D, Jian M X, et al. Isolation of sperm cells of Allium tuberosum Roxb. Fen Zi Xi Bao Sheng Wu Xue Bao, 2008, 41: 323–328, 18959007

    Google Scholar 

  23. Zhang Z, Xu H, Singh M B, et al. Isolation and collection of two populations of viable sperm cells from the pollen of Plumbago zeylanica. Zygote, 1998, 6: 295–298, 1:STN:280:DyaK1M7itVajtQ%3D%3D, 10.1017/S0967199498000240, 9921639

    Article  Google Scholar 

  24. Yang Y H, Qiu Y L, Xie C T, et al. Isolation of two populations of sperm cells and microelectrophoresis of pairs of sperm cells from pollen tubes of tobacco (Nicotiana tabacum). Sex Plant Reprod, 2005, 18: 47–53, 10.1007/s00497-005-0248-x

    Article  Google Scholar 

  25. Chen S H, Liao J P, Kuang A X, et al. Isolation of two populations of sperm cells from the pollen tube of Torenia fournieri. Plant Cell Rep, 2006, 25: 1138–1142, 1:CAS:528:DC%2BD28XhtFSns7fL, 10.1007/s00299-006-0189-3, 16786313

    Article  Google Scholar 

  26. Xu H, Weterings K, Vriezen W, et al. Isolation and characterization of male-germ-cell transcripts in Nicotiana tabacum. Sex Plant Reprod, 2002, 14: 339–346, 10.1007/s00497-002-0128-6

    Article  Google Scholar 

  27. Engel M L, Chaboud A, Dumas C, et al. Sperm cells of Zea mays have a complex complement of mRNAs. Plant J, 2003, 34: 697–707, 1:CAS:528:DC%2BD3sXlsFels7s%3D, 10.1046/j.1365-313X.2003.01761.x, 12787250

    Article  Google Scholar 

  28. Borges F, Gomes G, Gardner R, et al. Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol, 2008, 148: 1168–1181, 1:CAS:528:DC%2BD1cXht1GmtLnK, 10.1104/pp.108.125229, 18667720

    Article  Google Scholar 

  29. Russell S D. Preferential fertilization in Plumbago: Ultrastructural evidence for gamete-level recognition in an angiosperm. Proc Natl Acad Sci USA, 1985, 82: 6129–6132, 1:CAS:528:DyaL2MXlsFOmsrw%3D, 10.1073/pnas.82.18.6129, 16593605

    Article  Google Scholar 

  30. Hu S Y, Li L G, Zhu C. Isolation of viable embryo sacs and their protoplasts of Nicotiana tabacum. Acta Bot Sin, 1985, 27: 337–344

    Google Scholar 

  31. Sun M X, Yang H Y, Zhou C. Polyethylene glycol-induced fusion of selected pairs of single protoplasts. Acta Bot Sin, 1994, 36: 489–493, 1:CAS:528:DyaK2MXjtF2huro%3D

    Google Scholar 

  32. Mól R. Isolation of protoplasts from female gametophytes of Torenia fournieri. Plant Cell Reports, 1986, 5: 202–206, 10.1007/BF00269119

    Article  Google Scholar 

  33. Huang B Q, Russell S D. Isolation of fixed and viable eggs, central cells, and embryo sacs from ovules of Plumbago zeylanica. Plant Physiol, 1989, 90: 9–12, 1:STN:280:DC%2BC3cnhvV2htQ%3D%3D, 10.1104/pp.90.1.9, 16666774

    Article  Google Scholar 

  34. Kranz E, Bautor J, Lörz H. In vitro fertilization of single, isolated gametes of maize mediated by electrofusion. Sex Plant Reprod, 1991, 4: 12–16

    Google Scholar 

  35. Han H M, Zhao J, Shi H Z, et al. Isolation of egg cells and zygotes in Oryze sativa. Acta Bot Sin, 1998, 40: 186–188

    Google Scholar 

  36. Kumlehn J, Lörz H, Kranz E. Monitoring individual development of isolated wheat zygotes: a novel approach to study early embryogenesis. Protoplasma, 1999, 208: 156–162, 10.1007/BF01279086

    Article  Google Scholar 

  37. Ning J, Peng X B, Qu L H, et al. Differential gene expression in egg cells and zygotes suggests that the transcriptome is restructed before the first zygotic division in tobacco. FEBS Lett, 2006, 580: 1747–1752, 1:CAS:528:DC%2BD28Xis1Whsbw%3D, 10.1016/j.febslet.2006.02.028, 16510144

    Article  Google Scholar 

  38. Casson S, Spencer M, Walker K, et al. Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J, 2005, 42: 111–123, 1:CAS:528:DC%2BD2MXjtlOnt7s%3D, 10.1111/j.1365-313X.2005.02355.x, 15773857

    Article  Google Scholar 

  39. Wuest S E, Vijverberg K, Schmidt A, et al. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Current Biol, 2010, 20: 506–512, 1:CAS:528:DC%2BC3cXjs12qu7Y%3D, 10.1016/j.cub.2010.01.051

    Article  Google Scholar 

  40. Dresselhaus T, Lorz H, Kranz E. Representative cDNA libraries from few plant cells. Plant J, 1994, 5: 605–610, 1:CAS:528:DyaK2MXhsl2nsw%3D%3D, 10.1046/j.1365-313X.1994.5040605.x, 8012409

    Article  Google Scholar 

  41. Sprunck S, Baumann U, Edwards K, et al. The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). Plant J, 2005, 41: 660–672, 1:CAS:528:DC%2BD2MXisVWitLY%3D, 10.1111/j.1365-313X.2005.02332.x, 15703054

    Article  Google Scholar 

  42. Le Q, Gutierrez-Marcos J F, Costa L M, et al. Construction and screening of subtracted cDNA libraries from limited populations of plant cells: a comparative analysis of gene expression between maize egg cells and central cells. Plant J, 2005, 44: 167–178, 1:CAS:528:DC%2BD2MXhtFeksrnI, 10.1111/j.1365-313X.2005.02518.x, 16167904

    Article  Google Scholar 

  43. Gou X, Yuan T, Wei X, et al. Gene expression in the dimorphic sperm cells of Plumbago zeylanica: Transcript profiling, diversity, and relationship to cell type. Plant J, 2009, 60: 33–47, 1:CAS:528:DC%2BD1MXhtlSitrzF, 10.1111/j.1365-313X.2009.03934.x, 19500307

    Article  Google Scholar 

  44. Becker J D, Boavida L C, Carneiro J, et al. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol, 2003, 133: 713–725, 1:CAS:528:DC%2BD3sXosVaqtLk%3D, 10.1104/pp.103.028241, 14500793

    Article  Google Scholar 

  45. Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol, 2003, 132: 640–652, 1:CAS:528:DC%2BD3sXkslersbc%3D, 10.1104/pp.103.020925, 12805594

    Article  Google Scholar 

  46. Okada T, Bhalla P L, Singh M B. Expressed sequence tag analysis of Lilium longiflorum generative cells. Plant Cell Physiol, 2006, 47: 698–705, 1:CAS:528:DC%2BD28XmvVChu7o%3D, 10.1093/pcp/pcj040, 16571618

    Article  Google Scholar 

  47. Okada T, Singh M B, Bhalla P L. Transcriptome profiling of Lilium longiflorum generative cells by cDNA microarray. Plant Cell Rep, 2007, 26: 1045–1052, 1:CAS:528:DC%2BD2sXnsFaquro%3D, 10.1007/s00299-006-0300-9, 17245599

    Article  Google Scholar 

  48. Singh M B, Bhalla P, Russell S D. Molecular repertoire of flowering plant male germ cells. Sex Plant Reprod, 2008, 21: 27–36, 1:CAS:528:DC%2BD1cXitlOhurg%3D, 10.1007/s00497-008-0067-y

    Article  Google Scholar 

  49. Engel M L, Holmes-Davis R, McCormick S. Green sperm. Identification of male gamete promoters in Arabidopsis. Plant Physiol, 2005, 138: 2124–2133, 1:CAS:528:DC%2BD2MXps12lsLo%3D, 10.1104/pp.104.054213, 16055690

    Article  Google Scholar 

  50. Russell S D. Participation of male cytoplasm during gamete fusion in an angiosperm, Plumbago zeylanica. Science, 1980, 210: 200–201, 1:STN:280:DC%2BC3cvitVyitw%3D%3D, 10.1126/science.210.4466.200, 17741287

    Article  Google Scholar 

  51. Bayer M, Nawy T, Giglione C, et al. Paternal control of embryonic patterning in Arabidopsis thaliana. Science, 2009, 323: 1485–1488, 1:CAS:528:DC%2BD1MXivFSlsr4%3D, 10.1126/science.1167784, 19286558

    Article  Google Scholar 

  52. Friedman W E. Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development, 1999, 126: 1065–1075, 1:CAS:528:DyaK1MXitF2jsL0%3D, 9927606

    Google Scholar 

  53. Bino R J, Tuyl J M V, De Vries J N. Flow cytometric determination of relative nuclear DNA contents in bicellulate and tricellulate pollen. Ann Bot, 1990, 65: 3–8, 1:CAS:528:DyaK3cXhvFGgtbY%3D

    Google Scholar 

  54. Tian H Q, Yuan T, Russell S D. Relationship between double fertilization and the cell cycle in male and female gametes of tobacco. Sex Plant Reprod, 2005, 17: 243–252, 10.1007/s00497-004-0233-9

    Article  Google Scholar 

  55. Marton M L, Cordts S, Broadhvest J, et al. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science, 2005, 307: 573–576, 1:CAS:528:DC%2BD2MXmslOitg%3D%3D, 10.1126/science.1104954, 15681383

    Article  Google Scholar 

  56. Vrinten P L, Nakamura T, Kasha K J. Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare) L. Plant Mol Biol, 1999, 41: 455–463, 1:CAS:528:DyaK1MXotFeiu7k%3D, 10.1023/A:1006383724443, 10608656

    Article  Google Scholar 

  57. Yang H, Kaur N, Kiriakopolos S, et al. EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. Planta, 2006, 224: 1004–1014, 1:CAS:528:DC%2BD28XpvVartLg%3D, 10.1007/s00425-006-0283-3, 16718485

    Article  Google Scholar 

  58. Mogensen H L, Suthar H K. Ultrastructure of the egg apparatus of Nicotiana tabacum (Solanaceae) before and after fertilization. Bot Gazette, 1979, 140: 168–179, 10.1086/337073

    Article  Google Scholar 

  59. Dresselhaus T, Cordts S, Lorz H. A transcript encoding translation initiation factor eIF-5A is stored in unfertilized egg cells of maize. Plant Mol Biol, 1999, 39: 1063–1071, 1:CAS:528:DyaK1MXjt1SqtLY%3D, 10.1023/A:1006176819213, 10344210

    Article  Google Scholar 

  60. Escobar-Restrepo J M, Huck N, Kessler S, et al. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science, 2007, 317: 656–660, 1:CAS:528:DC%2BD2sXptVGrtrs%3D, 10.1126/science.1143562, 17673660

    Article  Google Scholar 

  61. Chen Y H, Li H J, Shi D Q, et al. The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell, 2007, 19: 3563–3577, 1:CAS:528:DC%2BD1cXns1emtQ%3D%3D, 10.1105/tpc.107.053967, 18055609

    Article  Google Scholar 

  62. Okuda S, Tsutsui H, Shiina K, et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature, 2009, 19: 458, 357–361

    Google Scholar 

  63. Warren R L, Sutton G G, Jones S J, et al. Assembling millions of short DNA sequences using SSAKE. Bioinformatics, 2007, 23: 500–501, 1:CAS:528:DC%2BD2sXhvFWltLg%3D, 10.1093/bioinformatics/btl629, 17158514

    Article  Google Scholar 

  64. Okamoto T, Higuchi K, Shinkawa T, et al. Identification of major proteins in maize egg cells. Plant Cell Physiol, 2004, 45: 1406–1412, 1:CAS:528:DC%2BD2cXhtVSisrrK, 10.1093/pcp/pch161, 15564524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MengXiang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, H., Sun, M. What we have learned from transcript profile analyses of male and female gametes in flowering plants. Sci. China Life Sci. 53, 927–933 (2010). https://doi.org/10.1007/s11427-010-4033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4033-1

Keywords

Navigation