Skip to main content
Log in

Enterobacter spp.: A new evidence causing bacterial wilt on mulberry

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Thirty-six pathogenetic bacterial strains were isolated from wilted mulberry plants in Hangzhou, Zhejiang province of China. The six representative strains were confirmed to be involved in more than one Enterobacter species by common bacteriological test, electron microscope observation, hypersensitive reaction, Koch’s postulates, physiological and biochemical test, biolog, fatty acid methyl esters analysis (FAMEs), enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR), 16s rRNA sequences analysis, and comparative analysis with 7 type strains and 3 reference strains. This is the first report on mulberry disease caused by Enterobacter spp. in the world providing new evidence on induction of the plant disease in this genus. The results are not only important in the mulberry disease management but also have significant scientific value for further studies of opportunistic human pathogens and environmental strains in Enterobacter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.bacterio.cict.fr/e/enterobacter.html

  2. Ohl M E, Miller S I. Salmonella: a model for bacterial pathogenesis. Annu Rev Med, 2001, 52: 259–274 10.1146/annurev.med.52.1.259, 1:CAS:528:DC%2BD3MXhs1Khsb8%3D, 11160778

    Article  PubMed  CAS  Google Scholar 

  3. Perombelon M C M, Kelman A. Ecology of the soft rot Erwinias. Annu Rev Phytopathol, 1980, 18: 361–387 10.1146/annurev.py.18.090180.002045

    Article  Google Scholar 

  4. Sanders W E J, Sanders C C. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin Microbiol Rev, 1997, 10: 220–241 9105752

    PubMed  PubMed Central  Google Scholar 

  5. Iversen C, Forsythe S J. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci Technol, 2003, 14: 443–454 10.1016/S0924-2244(03)00155-9, 1:CAS:528:DC%2BD3sXotVChu7g%3D

    Article  CAS  Google Scholar 

  6. Saddler G. Bacteria and Plant Disease 10. Oxford: Plant Pathologist’s Pocketbook, 2002

    Google Scholar 

  7. Nishijima K A, Wall M M, Siderhurst M S. Demonstrating pathogenicity of Enterobacter cloacae on macadamia and identifying associated colatiles of gray kernel of macadamin in Hawaii. Plant Dis, 2007, 91: 1221–1228 10.1094/PDIS-91-10-1221, 1:CAS:528:DC%2BD2sXhtFyjurvK

    Article  CAS  Google Scholar 

  8. Kui Y Z. Recent progress of research on mulberry diseases. Sci Sericult (in Chinese), 2000, 26(s): 9–14

    Google Scholar 

  9. Martinez H R, Pinckard T R, Costa H S, et al. Discovery and characterization of Xylella fastidiosa strains in Southern California causing mulberry leaf scorch. Plant Dis, 2006, 90: 1143–1149 10.1094/PD-90-1143

    Article  Google Scholar 

  10. Banerjee R, Manas D M, Ghosh P, et al. Genetic analysis of disease resistance against Xanthomonas campestris pv. mori in mulberry (Morus spp.) and identification of germplasm with high resistance. Arch phyto plant protection, 2007, 40: 176–182 10.1080/03235400500383727

    Article  Google Scholar 

  11. Nishijima K A, Couey H M, Alvarez A M. Internal yellowing, a bacterial disease of papaya fruits caused by Enterobacter cloacae. Plant Dis, 1987, 71: 1029–1034 10.1094/PD-71-1029

    Article  Google Scholar 

  12. Klement Z, Rudolph K, Sands D C. Methods in phytobacteriology. Budabest: Akademiai Kiado, 1990

    Google Scholar 

  13. Schaad N W, Jones J B, Chun W. Laboratory guide for identification of plant pathogenic bacteria. Minnesota: APS Press, 2001

    Google Scholar 

  14. Xu L H, Praphat K, Xie G L. Simple Technique of the Inspection for Mulberry Blight Ralstonia solanacearum. Bull Sericult (in Chinese), 2007, 38: 19–19

    Google Scholar 

  15. Xie G L, Soad A, Swings J, et al. Diversity of gram negative bacteria antagonistic against major pathogens of rice seed in the tropic environment. J Zhejiang Univ Sci, 2003, 4: 463–468 10.1631/jzus.2003.0463, 1:CAS:528:DC%2BD3sXms1ynsLs%3D, 12861624

    Article  PubMed  CAS  Google Scholar 

  16. Hoffmann H, Roggenkamp A. Population genetics of the nomenspecies Enterobacter cloacae. Appl Environ Microbiol, 2003, 69: 5306–5318 10.1128/AEM.69.9.5306-5318.2003, 1:CAS:528:DC%2BD3sXntlSjuro%3D, 12957918

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Iversen C, Lehner A, Mullane N, et al. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol, 2007, 7: 64 10.1186/1471-2148-7-64, 17439656

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cole J R, Chai B, Farris R J, et al. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucl Acids Res, 2005, 33: D294–D296 10.1093/nar/gki038, 1:CAS:528:DC%2BD2MXisVerug%3D%3D, 15608200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Fernandez-Baca V F, Ballesteros J A, Hervas P, et al. Molecular epidemiological typing of Enterobacter cloacae isolates from a neonatal intensive care unit: three-year prospective study. J Hosp Infect, 2001, 49: 173–182 10.1053/jhin.2001.1053, 1:STN:280:DC%2BD3MnntVyrsQ%3D%3D, 11716634

    Article  PubMed  CAS  Google Scholar 

  20. Chenna R, Sugawara H, Koike T. Multiple sequence alignment with the Clustal series of programs. Nucl Acids Res, 2003, 13: 3497–3500 10.1093/nar/gkg500

    Article  Google Scholar 

  21. Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser, 1999, 41: 95–98 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D

    CAS  Google Scholar 

  22. Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599 10.1093/molbev/msm092, 1:CAS:528:DC%2BD2sXpsVGrsL8%3D, 17488738

    Article  PubMed  CAS  Google Scholar 

  23. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425 1:STN:280:DyaL1c7ovFSjsA%3D%3D, 3447015

    PubMed  CAS  Google Scholar 

  24. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA, 2004, 101: 11030–11035 10.1073/pnas.0404206101, 1:CAS:528:DC%2BD2cXmsVCmt7s%3D, 15258291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Lai W J, Tan B A, Chen J Y. Isolation and diagnosis of mulberry wilt disease. Guangdong sericult (in Chinese), 1982, 2: 4–5

    Google Scholar 

  26. Buyer J S, Roberts D P, Russek C E. Soil and plant effects on microbial community structure. Canadian J Microbiol, 2002, 48: 955–964 10.1139/w02-095, 1:CAS:528:DC%2BD3sXntlyjsw%3D%3D

    Article  CAS  Google Scholar 

  27. Van de Peer Y, De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Bioinformatics, 1994, 10: 569–570 10.1093/bioinformatics/10.5.569

    Article  Google Scholar 

  28. Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol, 1990, 215: 403–410 1:CAS:528:DyaK3MXitVGmsA%3D%3D, 2231712

    Article  PubMed  CAS  Google Scholar 

  29. Grimont F, Grimont P A D. New York: The Prokaryotes.: Springer, 1992

  30. Zhang L X, Xie G L. Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol Lett, 2007, 266: 231–235 10.1111/j.1574-6968.2006.00530.x, 1:CAS:528:DC%2BD2sXpsVygtQ%3D%3D, 17233735

    Article  PubMed  CAS  Google Scholar 

  31. French C E, Nicklin S, Bruce N C. Aerobic degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase. Appl Environ Microbiol, 1998, 64: 2864–2868 1:CAS:528:DyaK1cXlsVKhtLs%3D, 9687442

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Nie L, Shah S, Rashid A, et al. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Bioch, 2002, 40: 355–361 10.1016/S0981-9428(02)01375-X, 1:CAS:528:DC%2BD38XivValsbs%3D

    Article  CAS  Google Scholar 

  33. Watanabe K, Abe K. Graduate School of Agricultural and Life Sciences, The University of300Tokyo, Bunkyo-ku, Tokyo, Japan, Sato M. Biological control of an insect pest by gut-colonizing Enterobacter cloacae transformed with ice nucleation gene. J Appl Microbiol, 2000, 88: 90–97 10.1046/j.1365-2672.2000.00904.x, 1:STN:280:DC%2BD3c7pslaqtg%3D%3D, 10735247

    Article  PubMed  CAS  Google Scholar 

  34. Chernin L, Ismailov Z, Haran S. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol, 1995, 61: 1720–1726 1:CAS:528:DyaK2MXlsFyksbg%3D, 16535017

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Tarraga A M C, Bentley S. Animal, vegetable or mineral? Nat Rev Microbiol, 2006, 4: 725–726 10.1038/nrmicro1508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuanLin Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Wang, G., Xie, G. et al. Enterobacter spp.: A new evidence causing bacterial wilt on mulberry. Sci. China Life Sci. 53, 292–300 (2010). https://doi.org/10.1007/s11427-010-0048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0048-x

Keywords

Navigation