Skip to main content
Log in

Weakly-solvating electrolytes enable ultralow-temperature (−80 °C) and high-power CFx/Li primary batteries

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Fluorinated carbons (CFx)/Li primary batteries with high theoretical energy density have been applied as indispensable energy storage devices with no need for rechargeability, yet plagued by poor rate capability and narrow temperature adaptability in actual scenarios. Herein, benefiting from precise solvation engineering for synergistic coordination of anions and low-affinity solvents, the optimized cyclic ether-based electrolyte is elaborated to significantly facilitate overall reaction dynamics closely correlated to lower desolvation barrier. As a result, the excellent rate (15 C, 650 mAh g−1) at room-temperature and ultra-low-temperature performance dropping to −80 °C (495 mAh g−1 at average output voltage of 2.11 V) is delivered by the end of 1.5 V cut-off voltage, far superior to other organic liquid electrolytes. Furthermore, the CFx/Li cell employing the high-loading electrode (18–22 mg cm−2) still yields 1,683 and 1,395 Wh kg−1 in the case of −40 °C and −60 °C, respectively. In short, the novel design strategy for cyclic ethers as basic solvents is proposed to enable the CFx/Li battery with superb subzero performances, which shows great potential in practical application for extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Xie F, Xu Z, Guo Z, Lu Y, Chen L, Titirici MM, Hu YS. Sci China Chem, 2021, 64: 1679–1692

    Article  CAS  Google Scholar 

  2. Sayahpour B, Hirsh H, Bai S, Schorr NB, Lambert TN, Mayer M, Bao W, Cheng D, Zhang M, Leung K, Harrison KL, Li W, Meng YS. Adv Energy Mater, 2022, 12: 2103196

    Article  CAS  Google Scholar 

  3. Zhang SS, Foster D, Read J. J Power Sources, 2009, 188: 601–605

    Article  CAS  Google Scholar 

  4. Sharma N, Dubois M, Guérin K, Pischedda V, Radescu S. Energy Tech, 2021, 9: 2000605

    Article  CAS  Google Scholar 

  5. Zhou CC, Su Z, Gao XL, Cao R, Yang SC, Liu XH. Rare Met, 2022, 41: 14–20

    Article  CAS  Google Scholar 

  6. Sun J, Wang T, Gao Y, Pan Z, Hu R, Wang J. InfoMat, 2022, 4: e12359

    CAS  Google Scholar 

  7. Yang Q, Jiang N, Shao Y, Zhang Y, Zhao X, Zeng Y, Qiu J. Sci China Chem, 2022, 65: 2351–2368

    Article  CAS  Google Scholar 

  8. He Y, Liu M, Chen S, Zhang J. Sci China Chem, 2022, 65: 391–398

    Article  CAS  Google Scholar 

  9. Xue W, Qin T, Li Q, Zan M, Yu X, Li H. Energy Storage Mater, 2022, 50: 598–605

    Article  Google Scholar 

  10. Fulvio PF, Brown SS, Adcock J, Mayes RT, Guo B, Sun XG, Mahurin SM, Veith GM, Dai S. Chem Mater, 2011, 23: 4420–4427

    Article  CAS  Google Scholar 

  11. Li Y, Wu X, Liu C, Wang S, Zhou P, Zhou T, Miao Z, Xing W, Zhuo S, Zhou J. J Mater Chem A, 2019, 7: 7128–7137

    Article  CAS  Google Scholar 

  12. Luo Z, Wang X, Chen D, Chang Q, Xie S, Ma Z, Lei W, Pan J, Pan Y, Huang J. ACS Appl Mater Interfaces, 2021, 13: 18809–18820

    Article  CAS  PubMed  Google Scholar 

  13. Peng C, Li Y, Yao F, Fu H, Zhou R, Feng Y, Feng W. Carbon, 2019, 153: 783–791

    Article  CAS  Google Scholar 

  14. Whitacre J, Yazami R, Hamwi A, Smart MC, Bennett W, Surya Prakash GK, Miller T, Bugga R. J Power Sources, 2006, 160: 577–584

    Article  CAS  Google Scholar 

  15. Huang J, Li F, Wu M, Wang H, Qi S, Jiang G, Li X, Ma J. Sci China Chem, 2022, 65: 840–857

    Article  CAS  Google Scholar 

  16. Watanabe N, Nakajima T, Hagiwara R. J Power Sources, 1987, 20: 87–92

    Article  CAS  Google Scholar 

  17. Leung K, Schorr NB, Mayer M, Lambert TN, Meng YS, Harrison KL. Chem Mater, 2021, 33: 1760–1770

    Article  CAS  Google Scholar 

  18. Jiang J, Ji H, Chen P, Ouyang C, Niu X, Li H, Wang L. J Power Sources, 2022, 527: 231193

    Article  CAS  Google Scholar 

  19. Watanabe N, Hagiwara R, Nakajima T, Touhara H, Ueno K. Electrochim Acta, 1982, 27: 1615–1619

    Article  CAS  Google Scholar 

  20. Fu A, Xiao Y, Jian J, Huang L, Tang C, Chen X, Zou Y, Wang J, Yang Y, Zheng J. ACS Appl Mater Interfaces, 2021, 13: 57470–57480

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Song Z, Wu H, Yu H, Feng W, Armand M, Huang X, Zhou Z, Zhang H. Angew Chem Int Ed, 2022, 61: e202211623

    CAS  Google Scholar 

  22. Ma T, Ni Y, Wang Q, Zhang W, Jin S, Zheng S, Yang X, Hou Y, Tao Z, Chen J. Angew Chem Int Ed, 2022, 61: e202207927

    Article  CAS  Google Scholar 

  23. Zhang N, Deng T, Zhang S, Wang C, Chen L, Wang C, Fan X. Adv Mater, 2022, 34: 2107899

    Article  CAS  Google Scholar 

  24. Hubble D, Brown DE, Zhao Y, Fang C, Lau J, McCloskey BD, Liu G. Energy Environ Sci, 2022, 15: 550–578

    Article  CAS  Google Scholar 

  25. Jin CB, Yao N, Xiao Y, Xie J, Li Z, Chen X, Li BQ, Zhang XQ, Huang JQ, Zhang Q. Adv Mater, 2023, 35: 2208340

    Article  CAS  Google Scholar 

  26. Whitacre JF, West WC, Smart MC, Yazami R, Prakash GKS, Hamwi A, Ratnakumar BV. Electrochem Solid-State Lett, 2007, 10: A166

    Article  CAS  Google Scholar 

  27. Fang Z, Yang Y, Zheng T, Wang N, Wang C, Dong X, Wang Y, Xia Y. Energy Storage Mater, 2021, 42: 477–483

    Article  Google Scholar 

  28. Ban J, Jiao X, Feng Y, Xue J, He C, Song J. ACS Appl Energy Mater, 2021, 4: 3777–3784

    Article  CAS  Google Scholar 

  29. Zhang SS, Foster D, Read J. J Power Sources, 2009, 188: 532–537

    Article  CAS  Google Scholar 

  30. Nagasubramanian G, Sanchez B. J Power Sources, 2007, 165: 630–634

    Article  CAS  Google Scholar 

  31. Li Q, Xue W, Sun X, Yu X, Li H, Chen L. Energy Storage Mater, 2021, 38: 482–488

    Article  Google Scholar 

  32. Yin Y, Holoubek J, Liu A, Sayahpour B, Raghavendran G, Cai G, Han B, Mayer M, Schorr NB, Lambert TN, Harrison KL, Li W, Chen Z, Meng YS. Adv Mater, 2023, 35: 2207932

    Article  CAS  Google Scholar 

  33. Sun C, Ji X, Weng S, Li R, Huang X, Zhu C, Xiao X, Deng T, Fan L, Chen L, Wang X, Wang C, Fan X. Adv Mater, 2022, 34: 2206020

    Article  CAS  Google Scholar 

  34. Luo D, Li M, Zheng Y, Ma Q, Gao R, Zhang Z, Dou H, Wen G, Shui L, Yu A, Wang X, Chen Z. Adv Sci, 2021, 8: 2101051

    Article  CAS  Google Scholar 

  35. Jiang LL, Yan C, Yao YX, Cai W, Huang JQ, Zhang Q. Angew Chem Int Ed, 2021, 60: 3402–3406

    Article  CAS  Google Scholar 

  36. Liang HJ, Gu ZY, Zhao XX, Guo JZ, Yang JL, Li WH, Li B, Liu ZM, Sun ZH, Zhang JP, Wu XL. Sci Bull, 2022, 67: 1581–1588

    Article  CAS  Google Scholar 

  37. Liang HJ, Gu ZY, Zhao XX, Guo JZ, Yang JL, Li WH, Li B, Liu ZM, Li WL, Wu XL. Angew Chem Int Ed, 2021, 60: 26837–26846

    Article  CAS  Google Scholar 

  38. Long S, Chen F, Ding F, Han Y, Liu X, Xu Q. J Phys Chem C, 2019, 123: 28048–28057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported from the Natural Science Foundation of Jilin Province (20220508141RC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Long Wu.

Additional information

Supporting information

The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, HJ., Su, MY., Zhao, XX. et al. Weakly-solvating electrolytes enable ultralow-temperature (−80 °C) and high-power CFx/Li primary batteries. Sci. China Chem. 66, 1982–1988 (2023). https://doi.org/10.1007/s11426-023-1638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1638-0

Navigation