Skip to main content
Log in

Tetraolefin stereospecific photodimerization and photopolymerization in coordination polymers

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In the context of the highly desirable design and preparation of smart materials with adjustable properties based on photoreactive compounds, we report two unique photoreactive coordination polymers (CPs),{[Zn(4-Iba)2(4-tkpvb)]·H2O}n(1, 4-HIba = 4-iodobenzoic acid, 4-tkpvb = 1,2,4,5-tetrakis(4-pyridylvinyl)benzene) and [Cd(1,4-bdc)(4-tkpvb)]n (2, 1,4-H2bdc = 1,4-benze-nedicarboxylic acid). Depending on the metal ions and auxiliary carboxylate ligands used, the 4-tkpvb ligands in 1 and 2 adopt different mutual arrangements, which facilitate the photodimerization and photopolymerization reactions in single crystal to single crystal (SCSC) transformations. Upon UV light irradiation which results in the dimerization of the 4-tkpvb ligands, the one-dimensional (1D) zigzag chainsof 1 are transformed into a two-dimensional (2D) network of {[Zn(4-Iba)2(bpbtpvcb)0.5]·H2O}n (1a, bpbtpvcb = 1,3-bis(4-pyridyl)-2,4-bis(2,4,5-tri(2-(4-pyridyl)vinyl) phenylcyclobutane). Similarly, in the crystals of 2, all 4-tkpvb ligands experience a photopolymerization reaction to form an unprecedented 1D linear organic polymer, poly-1,3-bis(4-pyridyl)-2,5-bis(2-(4-pyridyl)-vinyl) phenyl)cyclobutane (poly-bpbpvpcb). Furthermore, the 2D network of 2 is converted into a three-dimensional (3D) framework of [Cdn(1,4-bdc)n(poly-bpbpvpcb)] (2a). This work not only offers a new protocol to selectively synthesize new supramolecular cyclic compounds, but also expands the application of photopolymerization to the synthesis of macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Biradha K, Santra R. Chem Soc Rev, 2013, 42: 950–967

    Article  CAS  Google Scholar 

  2. Petrosko SH, Johnson R, White H, Mirkin CA. J Am Chem Soc, 2016, 138: 7443–7445

    Article  CAS  Google Scholar 

  3. Poplata S, Tröster A, Zou YQ, Bach T. Chem Rev, 2016, 116: 9748–9815

    Article  CAS  Google Scholar 

  4. Yelgaonkar SP, Campillo-Alvarado G, MacGillivray LR. J Am Chem Soc, 2020, 142: 20772–20777

    Article  CAS  Google Scholar 

  5. Yang SY, Naumov P, Fukuzumi S. J Am Chem Soc, 2009, 131: 7247–7249

    Article  CAS  Google Scholar 

  6. Liu D, Ren ZG, Li HX, Lang JP, Li NY, Abrahams BF. Angew Chem Int Ed, 2010, 49: 4767–4770

    Article  CAS  Google Scholar 

  7. Oburn SM, Swenson DC, Mariappan SVS, MacGillivray LR. J Am Chem Soc, 2017, 139: 8452–8454

    Article  CAS  Google Scholar 

  8. Claassens IE, Barbour LJ, Haynes DA. J Am Chem Soc, 2019, 141: 11425–11429

    Article  CAS  Google Scholar 

  9. Wang MF, Mi Y, Hu FL, Hirao H, Niu Z, Braunstein P, Lang JP. Nat Commun, 2022, 13: 2847

    Article  CAS  Google Scholar 

  10. Kole GK, Kojima T, Kawano M, Vittal JJ. Angew Chem Int Ed, 2014, 53: 2143–2146

    Article  CAS  Google Scholar 

  11. Hutchins KM, Rupasinghe TP, Ditzler LR, Swenson DC, Sander JRG, Baltrusaitis J, Tivanski AV, MacGillivray LR. J Am Chem Soc, 2014, 136: 6778–6781

    Article  CAS  Google Scholar 

  12. Park IH, Medishetty R, Lee HH, Mulijanto CE, Quah HS, Lee SS, Vittal JJ. Angew Chem Int Ed, 2015, 54: 7313–7317

    Article  CAS  Google Scholar 

  13. Wang LF, Zhuang WM, Huang GZ, Chen YC, Qiu JZ, Ni ZP, Tong ML. Chem Sci, 2019, 10: 7496–7502

    Article  CAS  Google Scholar 

  14. Shi YX, Zhang WH, Abrahams BF, Braunstein P, Lang JP. Angew Chem Int Ed, 2019, 58: 9453–9458

    Article  CAS  Google Scholar 

  15. MacGillivray LR, Reid JL, Ripmeester JA. J Am Chem Soc, 2000, 122: 7817–7818

    Article  CAS  Google Scholar 

  16. MacGillivray LR, Papaefstathiou GS, Friscić T, Hamilton TD, Bucar DK, Chu Q, Varshney DB, Georgiev IG. Acc Chem Res, 2008, 41: 280–291

    Article  CAS  Google Scholar 

  17. Ramamurthy V, Sivaguru J. Chem Rev, 2016, 116: 9914–9993

    Article  CAS  Google Scholar 

  18. Campillo-Alvarado G, D’mello KP, Swenson DC, Santhana Mariappan SV, Höpfl H, Morales-Rojas H, MacGillivray LR. Angew Chem Int Ed, 2019, 58: 5413–5416

    Article  CAS  Google Scholar 

  19. Hu F, Hao W, Mücke D, Pan Q, Li Z, Qi H, Zhao Y. J Am Chem Soc, 2021, 143: 5636–5642

    Article  CAS  Google Scholar 

  20. Chakraborty G, Park IH, Medishetty R, Vittal JJ. Chem Rev, 2021, 121: 3751–3891

    Article  CAS  Google Scholar 

  21. Park IH, Medishetty R, Kim JY, Lee SS, Vittal JJ. Angew Chem Int Ed, 2014, 53: 5591–5595

    Article  CAS  Google Scholar 

  22. Medishetty R, Husain A, Bai Z, Runčevski T, Dinnebier RE, Naumov P, Vittal JJ. Angew Chem Int Ed, 2014, 53: 5907–5911

    Article  CAS  Google Scholar 

  23. Park IH, Lee E, Lee SS, Vittal JJ. Angew Chem Int Ed, 2019, 58: 14860–14864

    Article  CAS  Google Scholar 

  24. Chu Q, Swenson DC, MacGillivray LR. Angew Chem Int Ed, 2005, 44: 3569–3572

    Article  CAS  Google Scholar 

  25. Han YF, Jin GX, Daniliuc CG, Hahn FE. Angew Chem Int Ed, 2015, 54: 4958–4962

    Article  CAS  Google Scholar 

  26. Claassens IE, Nikolayenko VI, Haynes DA, Barbour LJ. Angew Chem Int Ed, 2018, 57: 15563–15566

    Article  CAS  Google Scholar 

  27. Wang MF, Mi Y, Hu FL, Niu Z, Yin XH, Huang Q, Wang HF, Lang JP. J Am Chem Soc, 2020, 142: 700–704

    Article  CAS  Google Scholar 

  28. Park IH, Chanthapally A, Zhang Z, Lee SS, Zaworotko MJ, Vittal JJ. Angew Chem Int Ed, 2014, 53: 414–419

    Article  CAS  Google Scholar 

  29. Kawamichi T, Haneda T, Kawano M, Fujita M. Nature, 2009, 461: 633–635

    Article  CAS  Google Scholar 

  30. Zhang JP, Liao PQ, Zhou HL, Lin RB, Chen XM. Chem Soc Rev, 2014, 43: 5789–5814

    Article  CAS  Google Scholar 

  31. Huang SL, Hor TSA, Jin GX. Coord Chem Rev, 2017, 346: 112–122

    Article  CAS  Google Scholar 

  32. Samanta D, Mukherjee PS. J Am Chem Soc, 2014, 136: 17006–17009

    Article  CAS  Google Scholar 

  33. Dobbe CB, Gutiérrez-Blanco A, Tan TTY, Hepp A, Poyatos M, Peris E, Hahn FE. Chem Eur J, 2020, 26: 11565–11570

    Article  CAS  Google Scholar 

  34. Fernandez-Bartolome E, Martinez-Martinez A, Resines-Urien E, Piñeiro-Lopez L, Costa JS. Coord Chem Rev, 2022, 452: 214281

    Article  CAS  Google Scholar 

  35. Schmidt GMJ. Pure Appl Chem, 1971, 27: 647–678

    Article  CAS  Google Scholar 

  36. Blatov VA, Shevchenko AP, Proserpio DM. Cryst Growth Des, 2014, 14: 3576–3586

    Article  CAS  Google Scholar 

  37. Vogler A, Kunkely H. Coord Chem Rev, 2002, 230: 243–251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC No. 21531006, 21871196 and 21773163), the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry (No. KF2021005), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201905), the Natural Science Research Program of Jiangsu Provincial Department of Education (No. 20KJA150002), Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment, and the Huaishang Talent Program of Huaian. We are grateful to the useful comments and suggestions of the editor and the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Liu or Jian-Ping Lang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, WJ., Yang, ZY., Hong, YX. et al. Tetraolefin stereospecific photodimerization and photopolymerization in coordination polymers. Sci. China Chem. 65, 1867–1872 (2022). https://doi.org/10.1007/s11426-022-1313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1313-5

Keywords

Navigation