Skip to main content
Log in

A-π-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

With the development of photovoltaic materials, especially the small molecule acceptors (SMAs), organic solar cells (OSCs) have made breakthroughs in power conversion efficiencies (PCEs). However, the stability of high-performance OSCs remains a critical challenge for future technological applications. To tackle the inherent instability of SMA materials under the ambient conditions, much effort has been made to improve OSCs stability, including device modification and new materials design. Here we proposed a new electron acceptor design strategy and developed a “quasi-macromolecule” (QM) with an A-A structure, where the functionalized π-bridge is used as a linker between two SMAs (A), to improve the long-term stability without deteriorating device efficiencies. Such type of QMs enables excellent synthetic flexibility to modulate their optical/electrochemical properties, crystallization and aggregation behaviors by changing the A and π units. Moreover, QMs possess a unique long conjugated backbone combining high molecular weight over 3.5 kDa with high purity. Compared with the corresponding SMA BTP-4F-OD (Y6-OD), the devices based on newly synthesized A-A type acceptors QM1 and QM2 could exhibit better device stability and more promising PCEs of 17.05% and 16.36%, respectively. This kind of “molecular-framework” (A-A) structure provides a new design strategy for developing high-efficiency and -stability photovoltaic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Heeger AJ. Adv Mater, 2014, 26: 10–28

    Article  CAS  PubMed  Google Scholar 

  2. Fan X. Adv Funct Mater, 2020, 31: 2009399

    Article  Google Scholar 

  3. Cui Y, Yang C, Yao H, Zhu J, Wang Y, Jia G, Gao F, Hou J. Adv Mater, 2017, 29: 1703080

    Article  Google Scholar 

  4. Chen X, Xu G, Zeng G, Gu H, Chen H, Xu H, Yao H, Li Y, Hou J, Li Y. Adv Mater, 2020, 32: 1908478

    Article  CAS  Google Scholar 

  5. Wang Y, Chang Y, Zhang J, Lu G, Wei Z. Chem Res Chin Univ, 2020, 36: 343–350

    Article  CAS  Google Scholar 

  6. Kaltenbrunner M, White MS, Glowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S. Nat Commun, 2012, 3: 770

    Article  PubMed  Google Scholar 

  7. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2021, 65: 224–268

    Article  Google Scholar 

  8. Bi P, Zhang S, Wang J, Ren J, Hou J. Chin J Chem, 2021, 39: 2607–2625

    Article  CAS  Google Scholar 

  9. Frost JM, Faist MA, Nelson J. Adv Mater, 2010, 22: 4881–4884

    Article  CAS  PubMed  Google Scholar 

  10. Lenes M, Wetzelaer GJAH, Kooistra FB, Veenstra SC, Hummelen JC, Blom PWM. Adv Mater, 2008, 20: 2116–2119

    Article  CAS  Google Scholar 

  11. Choi JH, Son KI, Kim T, Kim K, Ohkubo K, Fukuzumi S. J Mater Chem, 2010, 20: 475–482

    Article  CAS  Google Scholar 

  12. Liu W, Xu X, Yuan J, Leclerc M, Zou Y, Li Y. ACS Energy Lett, 2021, 6: 598–608

    Article  CAS  Google Scholar 

  13. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  14. Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447–3507

    Article  CAS  PubMed  Google Scholar 

  15. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I. Chem Soc Rev, 2019, 48: 1596–1625

    Article  CAS  PubMed  Google Scholar 

  16. Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. Sci China Chem, 2020, 63: 1352–1366

    Article  CAS  Google Scholar 

  17. Zhang Q, Xu X, Chen S, Bodedla GB, Sun M, Hu Q, Peng Q, Huang B, Ke H, Liu F, Russell TP, Zhu X. Sustain Energy Fuels, 2018, 2: 2616–2624

    Article  CAS  Google Scholar 

  18. Shi K, Qiu B, Zhu C, Xia X, Xue X, Zhang J, Wan Y, Huang S, Meng L, Lu X, Zhang ZG, Li Y. J Mater Chem C, 2022, 10: 2017–2025

    Article  CAS  Google Scholar 

  19. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  20. Feng L, Yuan J, Zhang Z, Peng H, Zhang ZG, Xu S, Liu Y, Li Y, Zou Y. ACS Appl Mater Interfaces, 2017, 9: 31985–31992

    Article  CAS  PubMed  Google Scholar 

  21. Yuan J, Zou Y. Org Electron, 2022, 102: 106436

    Article  CAS  Google Scholar 

  22. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  23. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

  24. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33: 2102420

    Article  CAS  Google Scholar 

  25. Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6: 171–184

    Article  CAS  Google Scholar 

  26. Speller EM, Clarke AJ, Aristidou N, Wyatt MF, Francàs L, Fish G, Cha H, Lee HKH, Luke J, Wadsworth A, Evans AD, McCulloch I, Kim JS, Haque SA, Durrant JR, Dimitrov SD, Tsoi WC, Li Z. ACS Energy Lett, 2019, 4: 846–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu X, Li X, Zheng N, Gu C, Wang L, Fang J, Yang C. ACS Appl Mater Interfaces, 2019, 11: 43433–43440

    Article  CAS  PubMed  Google Scholar 

  28. Zhao F, Zhang H, Zhang R, Yuan J, He D, Zou Y, Gao F. Adv Energy Mater, 2020, 10: 2002746

    Article  CAS  Google Scholar 

  29. Cheng P, Zhan X. Chem Soc Rev, 2016, 45: 2544–2582

    Article  CAS  PubMed  Google Scholar 

  30. Doumon NY, Houard FV, Dong J, Yao H, Portale G, Hou J, Koster LJA. Org Electron, 2019, 69: 255–262

    Article  CAS  Google Scholar 

  31. Azeez A, Narayan KS. J Phys Chem C, 2021, 125: 12531–12540

    Article  CAS  Google Scholar 

  32. Park S, Son HJ. J Mater Chem A, 2019, 7: 25830–25837

    Article  CAS  Google Scholar 

  33. Ghasemi M, Balar N, Peng Z, Hu H, Qin Y, Kim T, Rech JJ, Bidwell M, Mask W, McCulloch I, You W, Amassian A, Risko C, O’Connor BT, Ade H. Nat Mater, 2021, 20: 525–532

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Liu Z, Wang S, Huang J, Ju H, Chen Q, Yu J, Chen H, Li C. Adv Energy Mater, 2019, 9: 1900887

    Article  Google Scholar 

  35. Liu B, Han Y, Li Z, Gu H, Yan L, Lin Y, Luo Q, Yang S, Ma CQ. Sol RRL, 2020, 5: 2000638

    Article  Google Scholar 

  36. Zhu X, Hu L, Wang W, Jiang X, Hu L, Zhou Y. ACS Appl Energy Mater, 2019, 2: 7602–7608

    Article  CAS  Google Scholar 

  37. Hu L, Zhao N, Jiang X, Jiang Y, Qin F, Sun L, Wang W, Zhou Y. J Mater Chem C, 2020, 8: 12218–12223

    Article  Google Scholar 

  38. Han Y, Dong H, Pan W, Liu B, Chen X, Huang R, Li Z, Li F, Luo Q, Zhang J, Wei Z, Ma CQ. ACS Appl Mater Interfaces, 2021, 13: 17869–17881

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Huang X, Ding K, Sheriff Jr HKM, Ye L, Liu H, Li CZ, Ade H, Forrest SR. Nat Commun, 2021, 12: 5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu L, Jiang Y, Sun L, Xie C, Qin F, Wang W, Zhou Y. J Phys Chem Lett, 2021, 12: 2607–2614

    Article  CAS  PubMed  Google Scholar 

  41. Zhang QQ, Li Y, Wang D, Chen Z, Li Y, Li S, Zhu H, Lu X, Chen H, Li CZ. Bull Chem Soc Jpn, 2021, 94: 183–190

    Article  Google Scholar 

  42. Zhu X, Liu S, Yue Q, Liu W, Sun S, Xu S. CCS Chem, 2021, 3: 1070–1080

    Article  CAS  Google Scholar 

  43. Liu H, Wang W, Zhou Y, Li Z. J Mater Chem A, 2021, 9: 1080–1088

    Article  CAS  Google Scholar 

  44. Yu Y, Zhang Y, Miao J, Liu J, Wang L. CCS Chem, 2022: 1–11

  45. Du X, Heumueller T, Gruber W, Classen A, Unruh T, Li N, Brabec CJ. Joule, 2019, 3: 215–226

    Article  CAS  Google Scholar 

  46. Liu ZX, Yu ZP, Shen Z, He C, Lau TK, Chen Z, Zhu H, Lu X, Xie Z, Chen H, Li CZ. Nat Commun, 2021, 12: 3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo J, Wu Y, Sun R, Wang W, Guo J, Wu Q, Tang X, Sun C, Luo Z, Chang K, Zhang Z, Yuan J, Li T, Tang W, Zhou E, Xiao Z, Ding L, Zou Y, Zhan X, Yang C, Li Z, Brabec CJ, Li Y, Min J. J Mater Chem A, 2019, 7: 25088–25101

    Article  CAS  Google Scholar 

  48. Seo S, Sun C, Lee J-, Lee S, Lee D, Wang C, Phan TN, Kim G, Cho S, Kim Y, Kim BJ. Adv Funct Mater, 2021, 32: 2108508

    Article  Google Scholar 

  49. Zhang ZG, Li Y. Angew Chem Int Ed, 2021, 60: 4422–4433

    Article  CAS  Google Scholar 

  50. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507

    Article  CAS  Google Scholar 

  51. Luke J, Speller EM, Wadsworth A, Wyatt MF, Dimitrov S, Lee HKH, Li Z, Tsoi WC, McCulloch I, Bagnis D, Durrant JR, Kim J. Adv Energy Mater, 2019, 9: 1803755

    Article  Google Scholar 

  52. Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA, Nielsen CB, Tan CH, Dimitrov SD, Shang Z, Gasparini N, Alamoudi M, Laquai F, Brabec CJ, Salleo A, Durrant JR, McCulloch I. Nat Commun, 2016, 7: 11585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuan J, Zhang H, Zhang R, Wang Y, Hou J, Leclerc M, Zhan X, Huang F, Gao F, Zou Y, Li Y. Chem, 2020, 6: 2147–2161

    Article  CAS  Google Scholar 

  54. Li S, Zhan L, Jin Y, Zhou G, Lau TK, Qin R, Shi M, Li CZ, Zhu H, Lu X, Zhang F, Chen H. Adv Mater, 2020, 32: 2001160

    Article  CAS  Google Scholar 

  55. Luo Z, Liu T, Ma R, Xiao Y, Zhan L, Zhang G, Sun H, Ni F, Chai G, Wang J, Zhong C, Zou Y, Guo X, Lu X, Chen H, Yan H, Yang C. Adv Mater, 2020, 32: 2005942

    Article  CAS  Google Scholar 

  56. Sun Y, Ma Y, Liu Y, Lin Y, Wang Z, Wang Y, Di C, Xiao K, Chen X, Qiu W, Zhang B, Yu G, Hu W, Zhu D. Adv Funct Mater, 2006, 16: 426–432

    Article  CAS  Google Scholar 

  57. Chen H, Hu D, Yang Q, Gao J, Fu J, Yang K, He H, Chen S, Kan Z, Duan T, Yang C, Ouyang J, Xiao Z, Sun K, Lu S. Joule, 2019, 3: 3034–3047

    Article  CAS  Google Scholar 

  58. Chen Y, Bai F, Peng Z, Zhu L, Zhang J, Zou X, Qin Y, Kim HK, Yuan J, Ma L, Zhang J, Yu H, Chow PCY, Huang F, Zou Y, Ade H, Liu F, Yan H. Adv Energy Mater, 2020, 11: 2003141

    Article  Google Scholar 

  59. Zhu C, Yuan J, Cai F, Meng L, Zhang H, Chen H, Li J, Qiu B, Peng H, Chen S, Hu Y, Yang C, Gao F, Zou Y, Li Y. Energy Environ Sci, 2020, 13: 2459–2466

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52125306, 21875286, 22005347), the Natural Science Foundation of Hunan Province (2021JJ20068), and the National Key Research and Development Program of China (2017YFA0206600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yuan or Yingping Zou.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supporting Information

11426_2022_1281_MOESM1_ESM.docx

A-π-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%, approximately 2.83 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yuan, J., Zhu, C. et al. A-π-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%. Sci. China Chem. 65, 1374–1382 (2022). https://doi.org/10.1007/s11426-022-1281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1281-0

Navigation