Skip to main content
Log in

Naphthalene diimide based near-infrared luminogens with aggregation-induced emission characteristics for biological imaging and high mobility ambipolar transistors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic conjugated materials combining high conductivity with strong solid-state emission are highly desired for organic electronic applications, yet still rather rare. Herein, a novel luminogen (TEN) comprised by linking naphthalene diimides and tri-phenyl ethylene with vinyl bridges is reported. TEN exhibits aggregation-induced emission (AIE) behavior of a strong near-infrared fluorescence over 700 nm and the efficiency above 60.5% in the solid state, while also shows promising application in vivo bio-imaging with good permeability and extremely low background. Single crystal of TEN reveals intra- and intermolecular C-H⋯O hydrogen bonds, contributing to an inclined molecular stacking along the a-axis of the cell, creating a 1D charge carrier transporting channel under a short π-π interaction distance of 3.42 Å, which might benefit the solid emission and charge transport ability simultaneously. Solution processed bottom contact, top gate organic field effect transistors based on TEN reveal a high ambipolar charge transport ability with the hole mobility up to 0.13 cm2 V−1 s−1 and electron mobility up to 0.010 cm2 V−1 s−1. Further atomic force microscopy and X-ray diffraction analysis on TEN thin film confirm the existence of the 1D π-π stacking channel, suggesting the stacking geometry revealed in crystal crucial for facilitating high charge carrier mobility while preserving the strong solid emission at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo Y, Yu G, Liu Y. Adv Mater, 2010, 22: 4427–4447

    CAS  PubMed  Google Scholar 

  2. Liu J, Jiang L, Hu W, Liu Y, Zhu D. Sci China Chem, 2019, 62: 313–330

    CAS  Google Scholar 

  3. Huang H, Yang L, Facchetti A, Marks TJ. Chem Rev, 2017, 117: 10291–10318

    CAS  PubMed  Google Scholar 

  4. Zhang X, Dong H, Hu W. Adv Mater, 2018, 30: 1801048

    Google Scholar 

  5. Liu YC, Li CS, Ren ZJ, Yan SK, Bryce MR. Nat Rev Mater, 2018, 3: 180003

    Google Scholar 

  6. Zaumseil J. Adv Funct Mater, 2020, 30: 1905269

    CAS  Google Scholar 

  7. Liu Q, Bottle SE, Sonar P. Adv Mater, 2020, 32: 1903882

    CAS  Google Scholar 

  8. Li P, Chan H, Lai SL, Ng M, Chan MY, Yam VWW. Angew Chem Int Ed, 2019, 58: 9088–9094

    CAS  Google Scholar 

  9. Paterson AF, Singh S, Fallon KJ, Hodsden T, Han Y, Schroeder BC, Bronstein H, Heeney M, McCulloch I, Anthopoulos TD. Adv Mater, 2018, 30: 1801079

    Google Scholar 

  10. Liang X, Gu S, Cai Z, Sun W, Tan L, Dong L, Wang L, Liu Z, Chen W, Li J. Chem Commun, 2017, 53: 8176–8179

    CAS  Google Scholar 

  11. Liang X, Sun W, Chen Y, Tan L, Cai Z, Liu Z, Wang L, Li J, Chen W, Dong L. J Mater Chem C, 2018, 6: 1774–1779

    CAS  Google Scholar 

  12. Sirringhaus H. Adv Mater, 2014, 26: 1319–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun Y, Guo Y, Liu Y. Mater Sci Eng-R-Rep, 2019, 136: 13–26

    Google Scholar 

  14. Lenz J, Del Giudice F, Geisenhof FR, Winterer F, Weitz RT. Nat Nanotechnol, 2019, 14: 579–585

    CAS  PubMed  Google Scholar 

  15. Zhang C, Chen P, Hu W. Small, 2016, 12: 1252–1294

    CAS  PubMed  Google Scholar 

  16. Qin Z, Gao H, Liu J, Zhou K, Li J, Dang Y, Huang L, Deng H, Zhang X, Dong H, Hu W. Adv Mater, 2019, 31: 1903175

    Google Scholar 

  17. Samuel IDW, Turnbull GA. Chem Rev, 2007, 107: 1272–1295

    CAS  PubMed  Google Scholar 

  18. Namdas EB, Tong M, Ledochowitsch P, Mednick SR, Yuen JD, Moses D, Heeger AJ. Adv Mater, 2009, 21: 799–802

    CAS  Google Scholar 

  19. Ma S, Zhou K, Hu M, Li Q, Liu Y, Zhang H, Jing J, Dong H, Xu B, Hu W, Tian W. Adv Funct Mater, 2018, 28: 1802454

    Google Scholar 

  20. Liu Z, Zhang G, Zhang D. Chem Eur J, 2016, 22: 462–471

    CAS  PubMed  Google Scholar 

  21. Gao X, Zhao Z. Sci China Chem, 2015, 58: 947–968

    CAS  Google Scholar 

  22. Nie H, Hu K, Cai Y, Peng Q, Zhao Z, Hu R, Chen J, Su SJ, Qin A, Tang BZ. Mater Chem Front, 2017, 1: 1125–1129

    CAS  Google Scholar 

  23. Li Q, Li Z. Adv Sci, 2017, 4: 1600484

    Google Scholar 

  24. Ju H, Wang K, Zhang J, Geng H, Liu Z, Zhang G, Zhao Y, Zhang D. Chem Mater, 2017, 29: 3580–3588

    CAS  Google Scholar 

  25. Wu YH, Huang K, Chen SF, Chen YZ, Tung CH, Wu LZ. Sci China Chem, 2019, 62: 1194–1197

    CAS  Google Scholar 

  26. Chaudhry MU, Panidi J, Nam S, Smith A, Lim J, Tetzner K, Patsalas PA, Vourlias G, Sit W, Firdaus Y, Heeney M, Bradley DDC, Anthopoulos TD. Adv Electron Mater, 2020, 6: 1901132

    CAS  Google Scholar 

  27. Liang X, Tan L, Liu Z, Ma Y, Zhang G, Wang L, Li S, Dong L, Li J, Chen W. Chem Commun, 2017, 53: 4934–4937

    CAS  Google Scholar 

  28. Chen Y, Liang X, Yang H, Wang Q, Zhou X, Guo D, Li S, Zhou C, Dong L, Liu Z, Cai Z, Chen W, Tan L. Macromolecules, 2019, 52: 8332–8338

    CAS  Google Scholar 

  29. Zhao Z, Gao S, Zheng X, Zhang P, Wu W, Kwok RTK, Xiong Y, Leung NLC, Chen Y, Gao X, Lam JWY, Tang BZ. Adv Funct Mater, 2018, 28: 170560

    Google Scholar 

  30. Chaudhry MU, Muhieddine K, Wawrzinek R, Sobus J, Tandy K, Lo S-, Namdas EB. Adv Funct Mater, 2020, 30: 1905282

    CAS  Google Scholar 

  31. Xue J, Li C, Xin L, Duan L, Qiao J. Chem Sci, 2016, 7: 2888–2895

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang X, Guo Z, Zhu S, Liu Y, Shi P, Tian H, Zhu WH. J Mater Chem B, 2016, 4: 4683–4689

    CAS  PubMed  Google Scholar 

  33. Gao X, Hu Y. J Mater Chem C, 2014, 2: 3099–3117

    CAS  Google Scholar 

  34. Sasaki S, Drummen GPC, Konishi G. J Mater Chem C, 2016, 4: 2731–2743

    CAS  Google Scholar 

  35. Chen L, Li C, Müllen K. J Mater Chem C, 2014, 2: 1938–1956

    CAS  Google Scholar 

  36. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    CAS  PubMed  Google Scholar 

  37. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741

  38. Yang J, Chi Z, Zhu W, Tang BZ, Li Z. Sci China Chem, 2019, 62: 1090–1098

    CAS  Google Scholar 

  39. Barros TC, Brochsztain S, Toscano VG, Filho PB, Politi MJ. J Photochem photobiol A-Chem, 1997, 111: 97–104

    CAS  Google Scholar 

  40. Liu J, Ye G, Zee B, Dong J, Qiu X, Liu Y, Portale G, Chiechi RC, Koster LJA. Adv Mater, 2018, 30: 1804290

    Google Scholar 

  41. Sommer M. J Mater Chem C, 2014, 2: 3088–3098

    CAS  Google Scholar 

  42. Fei Z, Han Y, Martin J, Scholes FH, Al-Hashimi M, AlQaradawi SY, Stingelin N, Anthopoulos TD, Heeney M. Macromolecules, 2016, 49: 6384–6393

    CAS  Google Scholar 

  43. Ren Y, Yang X, Zhou L, Mao J-, Han S-, Zhou Y. Adv Funct Mater, 2019, 29: 1902105

    Google Scholar 

  44. Kar H, Ghosh S. Chem Commun, 2016, 52: 8818–8821

    CAS  Google Scholar 

  45. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479

    CAS  PubMed  Google Scholar 

  46. Rowland RS, Taylor R. J Phys Chem, 1996, 100: 7384–7391

    CAS  Google Scholar 

  47. Verlaak S, Arkhipov V, Heremans P. Appl Phys Lett, 2003, 82: 745–747

    CAS  Google Scholar 

  48. Zhao Y, Di C, Gao X, Hu Y, Guo Y, Zhang L, Liu Y, Wang J, Hu W, Zhu D. Adv Mater, 2011, 23: 2448–2453

    CAS  PubMed  Google Scholar 

  49. Shao W, Dong H, Jiang L, Hu W. Chem Sci, 2011, 2: 590–600

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Scholarship Council, the National Natural Science Foundation of China (21702016, 21905015), the Chongqing Science and Technology Commission (cstc2018jcyjAX0091) and the Fundamental Research Funds for the Central Universities (2019CDQYHG023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinggui Gu or Luxi Tan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2020_9776_MOESM1_ESM.docx

Naphthalene Diimide based Near-infrared Luminogens with Aggregation-Induced Emission Characteristics for Biological Imaging and High Mobility Ambipolar Transistors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Li, L., Zhu, X. et al. Naphthalene diimide based near-infrared luminogens with aggregation-induced emission characteristics for biological imaging and high mobility ambipolar transistors. Sci. China Chem. 63, 1198–1207 (2020). https://doi.org/10.1007/s11426-020-9776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9776-8

Keywords

Navigation