Skip to main content
Log in

Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tin-based perovskite solar cells (TPSCs) as the most promising candidate for lead-free PSCs have incurred extensive researches all over the world. However, the crystallization process of tin-based perovskite is too fast during the solution-deposited process, resulting in abundant pinholes and poor homogeneity that cause serious charge recombination in perovskite layer. Here, we employed the π-conjugated Lewis base molecules with high electron density to systematically control the crystallization rate of FASnI3 perovskite by forming stable intermediate phase with the Sn-I frameworks, leading to a compact and uniform perovskite film with large increase in the carrier lifetime. Meanwhile, the introduction of the π-conjugated systems also retards the permeation of moisture into perovskite crystal, which significantly suppresses the film degradation in air. These benefits contributed to a stabilizing power conversion efficiency (PCE) of 10.1% for the TPSCs and maintained over 90% of its initial PCE after 1000-h light soaking in air. Also, a steady-state efficiency of 9.2% was certified at the accredited test center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photon, 2019, 13: 460–466

    Article  CAS  Google Scholar 

  2. Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG. Nat Photon, 2014, 8: 489–494

    Article  CAS  Google Scholar 

  3. Kumar MH, Dharani S, Leong WL, Boix PP, Prabhakar RR, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar SG, Mathews N. Adv Mater, 2014, 26: 7122–7127

    Article  CAS  PubMed  Google Scholar 

  4. Krishnamoorthy T, Ding H, Yan C, Leong WL, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N, Mhaisalkar SG. J Mater Chem A, 2015, 3: 23829–23832

    Article  CAS  Google Scholar 

  5. Saparov B, Hong F, Sun JP, Duan HS, Meng W, Cameron S, Hill IG, Yan Y, Mitzi DB. Chem Mater, 2015, 27: 5622–5632

    Article  CAS  Google Scholar 

  6. Song TB, Yokoyama T, Aramaki S, Kanatzidis MG. ACS Energy Lett, 2017, 2: 897–903

    Article  CAS  Google Scholar 

  7. Cortecchia D, Dewi HA, Yin J, Bruno A, Chen S, Baikie T, Boix PP, Grätzel M, Mhaisalkar S, Soci C, Mathews N. Inorg Chem, 2016, 55: 1044–1052

    Article  CAS  PubMed  Google Scholar 

  8. Shao Z, Le Mercier T, Madec MB, Pauporté T. Mater Des, 2018, 141: 81–87

    Article  CAS  Google Scholar 

  9. Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad AA, Sadhanala A, Eperon GE, Pathak SK, Johnston MB, Petrozza A, Herz LM, Snaith HJ. Energy Environ Sci, 2014, 7: 3061–3068

    Article  CAS  Google Scholar 

  10. Lee SJ, Shin SS, Kim YC, Kim D, Ahn TK, Noh JH, Seo J, Seok SI. J Am Chem Soc, 2016, 138: 3974–3977

    Article  CAS  PubMed  Google Scholar 

  11. Liao W, Zhao D, Yu Y, Grice CR, Wang C, Cimaroli AJ, Schulz P, Meng W, Zhu K, Xiong RG, Yan Y. Adv Mater, 2016, 28: 9333–9340

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Z, Gu F, Li Y, Sun W, Ye S, Rao H, Liu Z, Bian Z, Huang C. Adv Sci, 2017, 4: 1700204

    Article  CAS  Google Scholar 

  13. Liu X, Wang Y, Xie F, Yang X, Han L. ACS Energy Lett, 2018, 3: 1116–1121

    Article  CAS  Google Scholar 

  14. Marshall KP, Walker M, Walton RI, Hatton RA. Nat Energy, 2016, 1: 16178

    Article  CAS  Google Scholar 

  15. Hao F, Stoumpos CC, Guo P, Zhou N, Marks TJ, Chang RPH, Kanatzidis MG. JAm Chem Soc, 2015, 137: 11445–11452

    Article  CAS  Google Scholar 

  16. Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z. Joule, 2018, 2: 2732–2743

    Article  CAS  Google Scholar 

  17. Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan LN, Quintero-Bermudez R, Sutherland BR, Mi Q, Sargent EH, Ning Z. J Am Chem Soc, 2017, 139: 6693–6699

    Article  CAS  PubMed  Google Scholar 

  18. Cao DH, Stoumpos CC, Yokoyama T, Logsdon JL, Song TB, Farha OK, Wasielewski MR, Hupp JT, Kanatzidis MG. ACS Energy Lett, 2017, 2: 982–990

    Article  CAS  Google Scholar 

  19. Shao S, Liu J, Portale G, Fang HH, Blake GR, ten Brink GH, Koster LJA, Loi MA. Adv Energy Mater, 2018, 8: 1702019

    Article  CAS  Google Scholar 

  20. Jokar E, Chien CH, Fathi A, Rameez M, Chang YH, Diau EWG. Energy Environ Sci, 2018, 11: 2353–2362

    Article  CAS  Google Scholar 

  21. Jokar E, Chien CH, Tsai CM, Fathi A, Diau EWG. Adv Mater, 2019, 31: 1804835

    Article  CAS  Google Scholar 

  22. Lin Y, Shen L, Dai J, Deng Y, Wu Y, Bai Y, Zheng X, Wang J, Fang Y, Wei H, Ma W, Zeng XC, Zhan X, Huang J. Adv Mater, 2017, 29: 1604545

    Article  CAS  Google Scholar 

  23. Wu T, Wang Y, Li X, Wu Y, Meng X, Cui D, Yang X, Han L. Adv Energy Mater, 2019, 9: 1803766

    Article  CAS  Google Scholar 

  24. Wu Y, Zhu W. Chem Soc Rev, 2013, 42: 2039–2058

    Article  PubMed  Google Scholar 

  25. Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M. Energy Environ Sci, 2012, 5: 6057–6060

    Article  CAS  Google Scholar 

  26. Wu T, Wang Y, Dai Z, Cui D, Wang T, Meng X, Bi E, Yang X, Han L. Adv Mater, 2019, 2: 1900605

    Article  CAS  Google Scholar 

  27. Li N, Tao S, Chen Y, Niu X, Onwudinanti CK, Hu C, Qiu Z, Xu Z, Zheng G, Wang L, Zhang Y, Li L, Liu H, Lun Y, Hong J, Wang X, Liu Y, Xie H, Gao Y, Bai Y, Yang S, Brocks G, Chen Q, Zhou H. Nat Energy, 2019, 4: 408–415

    Article  CAS  Google Scholar 

  28. Liang M, Chen J. Chem Soc Rev, 2013, 42: 3453–3488

    Article  CAS  PubMed  Google Scholar 

  29. El-Mellouhi F, Marzouk A, Bentria ET, Rashkeev SN, Kais S, Alharbi FH. ChemSusChem, 2016, 9: 2648–2655

    Article  CAS  PubMed  Google Scholar 

  30. Ellis H, Eriksson SK, Feldt SM, Gabrielsson E, Lohse PW, Lindblad R, Sun L, Rensmo H, Boschloo G, Hagfeldt A. J Phys Chem C, 2013, 117: 21029–21036

    Article  CAS  Google Scholar 

  31. de Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE, Ziffer ME, Snaith HJ, Ginger DS. Science, 2015, 348: 683–686

    Article  CAS  Google Scholar 

  32. Song TB, Yokoyama T, Stoumpos CC, Logsdon J, Cao DH, Wasielewski MR, Aramaki S, Kanatzidis MG. J Am Chem Soc, 2017, 139: 836–842

    Article  CAS  PubMed  Google Scholar 

  33. Tai Q, Guo X, Tang G, You P, Ng TW, Shen D, Cao J, Liu CK, Wang N, Zhu Y, Lee CS, Yan F. Angew Chem Int Ed, 2019, 58: 806–810

    Article  CAS  Google Scholar 

  34. Lee SJ, Shin SS, Im J, Ahn TK, Noh JH, Jeon NJ, Seok SI, Seo J. ACS Energy Lett, 2018, 3: 46–53

    Article  CAS  Google Scholar 

  35. Wang F, Ma J, Xie F, Li L, Chen J, Fan J, Zhao N. Adv Funct Mater, 2016, 26: 3417–3423

    Article  CAS  Google Scholar 

  36. Kayesh ME, Matsuishi K, Kaneko R, Kazaoui S, Lee JJ, Noda T, Islam A. ACS Energy Lett, 2019, 4: 278–284

    Article  CAS  Google Scholar 

  37. Yuan Y, Huang J. Acc Chem Res, 2016, 49: 286–293

    Article  CAS  PubMed  Google Scholar 

  38. Cai M, Ishida N, Li X, Yang X, Noda T, Wu Y, Xie F, Naito H, Fujita D, Han L. Joule, 2018, 2: 296–306

    Article  CAS  Google Scholar 

  39. Wang K, Jin Z, Liang L, Bian H, Wang H, Feng J, Wang Q, Liu SF. Nano Energy, 2019, 58: 175–182

    Article  CAS  Google Scholar 

  40. Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784

    Article  CAS  PubMed  Google Scholar 

  41. Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng XC, Huang J. Nat Energy, 2017, 2: 17102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11574199, 11674219, 11834011), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. The work performed at National Institute for Materials Science was supported by the New Energy and Industrial Technology Development Organization (NEDO, Japan), and the KAKEHI Grant of Japan (18H02078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyuan Han.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Liu, X., He, X. et al. Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Sci. China Chem. 63, 107–115 (2020). https://doi.org/10.1007/s11426-019-9653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9653-8

Keywords

Navigation