Skip to main content
Log in

Graphdiyne oxide enhances the stability of solid contact-based ionselective electrodes for excellent in vivo analysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Quantitively and stably tracking ion dynamics in the living brain of animals is essential to understanding many physiological and pathological processes. Solid-state ion-selective electrodes (ISEs) are powerful tools for monitoring the dynamic change of ions at physiological concentration range; however, the unintentional accumulation of an aqueous layer at the ion selective membrane/ solid contact interface compromises the electrode potential stability, limiting its in vivo application. Here, using manganese dioxide (MnO2) and potassium ISE (K+-ISE) as model solid contact and ISEs, we demonstrate for the first time that graphdiyne oxide (GDYO) can enhance the potential stability of solid contact-based ISEs. Our results suggest that the intrinsic structural and hydrophobic features of GDYO, plays a key role in impeding and stabilizing the formation of water layer. With GDYO-MnO2 acting as the solid contact, the K+-ISE displays an excellent short-term potential stability and maintains great selectivity, achieving reliable K+ sensing at the animal level. The GDYO-based strategy is generalizable to different ISEs and does not require complicated processing steps, paving an exciting opportunity for in vivo ion recognition and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bollmann JH, Sakmann B. Nat Neurosci, 2005, 8: 426–434

    Article  CAS  PubMed  Google Scholar 

  2. Jan LY, Jan YN. Nature, 1994, 371: 119–122

    Article  CAS  PubMed  Google Scholar 

  3. Chen YY, Xue SH, Zhou YB, Yang JJ. Sci China Chem, 2010, 53: 52–60

    Article  CAS  Google Scholar 

  4. Jentsch TJ, Hübner CA, Fuhrmann JC. Nat Cell Biol, 2004, 6: 1039–1047

    Article  CAS  PubMed  Google Scholar 

  5. Zhao L, Jiang Y, Wei H, Jiang Y, Ma W, Zheng W, Cao AM, Mao L. Anal Chem, 2019, 91: 4421–4428

    Article  CAS  PubMed  Google Scholar 

  6. Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L. Anal Chem, 2017, 89: 300–313

    Article  CAS  PubMed  Google Scholar 

  7. Hu J, Stein A, Bühlmann P. Trac Trends Anal Chem, 2016, 76: 102–114

    Article  CAS  Google Scholar 

  8. Nicholson C, Rice ME. Use of ion-selective microelectrodes and voltammetric microsensors to study brain cell microenvironment. In: Boulton AA, Baker GB, Walz W, Eds. Neuromethods. Vol. 9: Neuronal Microenvironment. New Jersey: Humana Press, 1988. 247–361

    Chapter  Google Scholar 

  9. Hao J, Xiao T, Wu F, Yu P, Mao L. Anal Chem, 2016, 88: 11238–11243

    Article  CAS  PubMed  Google Scholar 

  10. Zdrachek E, Bakker E. Anal Chem, 2018, 90: 7591–7599

    Article  CAS  PubMed  Google Scholar 

  11. Veder JP, De Marco R, Clarke G, Chester R, Nelson A, Prince K, Pretsch E, Bakker E. Anal Chem, 2008, 80: 6731–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindner E, Gyurcsányi RE. J Solid State Electrochem, 2009, 13: 51–68

    Article  CAS  Google Scholar 

  13. Li J, Yin T, Qin W. Sens Actuators B-Chem, 2017, 239: 438–446

    Article  CAS  Google Scholar 

  14. Paczosa-Bator B, Piek M, Piech R. Anal Chem, 2015, 87: 1718–1725

    Article  CAS  PubMed  Google Scholar 

  15. Yuan D, Anthis AHC, Ghahraman Afshar M, Pankratova N, Cuartero M, Crespo GA, Bakker E. Anal Chem, 2015, 87: 8640–8645

    Article  CAS  PubMed  Google Scholar 

  16. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem Commun, 2010, 46: 3256–3258

    Article  CAS  Google Scholar 

  17. Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y. Chem Rev, 2018, 118: 7744–7803

    Article  CAS  PubMed  Google Scholar 

  18. Gao X, Liu H, Wang D, Zhang J. Chem Soc Rev, 2019, 48: 908–936

    Article  CAS  PubMed  Google Scholar 

  19. Xue Y, Li Y, Zhang J, Liu Z, Zhao Y. Sci China Chem, 2018, 61: 765–786

    Article  CAS  Google Scholar 

  20. Chen Z, Molina-Jirón C, Klyatskaya S, Klappenberger F, Ruben M. Ann Phys, 2017, 529: 1700056

    Article  CAS  Google Scholar 

  21. Zhou J, Zhang J, Liu Z. Acta Phy-Chim Sinica, 2018, 34: 977–991

    CAS  Google Scholar 

  22. Nulakani NVR, Subramanian V. ACS Omega, 2017, 2: 6822–6830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao X, Zhu Y, Yi D, Zhou J, Zhang S, Yin C, Ding F, Zhang S, Yi X, Wang J, Tong L, Han Y, Liu Z, Zhang J. Sci Adv, 2018, 4: eaat6378

  24. Gao J, Li J, Chen Y, Zuo Z, Li Y, Liu H, Li Y. Nano Energy, 2018, 43: 192–199

    Article  CAS  Google Scholar 

  25. Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D. Nat Chem, 2018, 10: 924–931

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Liu H, Huang C, Cui G, Li Y. Chem Commun, 2015, 51: 1834–1837

    Article  CAS  Google Scholar 

  27. Li M, Luo Z, Zhao Y. Sci China Chem, 2018, 61: 1214–1226

    Article  CAS  Google Scholar 

  28. Li J, Gao X, Liu B, Feng Q, Li XB, Huang MY, Liu Z, Zhang J, Tung CH, Wu LZ. J Am Chem Soc, 2016, 138: 3954–3957

    Article  CAS  PubMed  Google Scholar 

  29. Xie J, Wang N, Dong X, Wang C, Du Z, Mei L, Yong Y, Huang C, Li Y, Gu Z, Zhao Y. ACS Appl Mater Interfaces, 2019, 11: 2579–2590

    Article  CAS  PubMed  Google Scholar 

  30. Qi H, Yu P, Wang Y, Han G, Liu H, Yi Y, Li Y, Mao L. J Am Chem Soc, 2015, 137: 5260–5263

    Article  CAS  PubMed  Google Scholar 

  31. Guo S, Yan H, Wu F, Zhao L, Yu P, Liu H, Li Y, Mao L. Anal Chem, 2017, 89: 13008–13015

    Article  CAS  PubMed  Google Scholar 

  32. Yan H, Guo S, Wu F, Yu P, Liu H, Li Y, Mao L. Angew Chem Int Ed, 2018, 57: 3922–3926

    Article  CAS  Google Scholar 

  33. Wei W, Cui X, Chen W, Ivey DG. Chem Soc Rev, 2011, 40: 1697–1721

    Article  CAS  PubMed  Google Scholar 

  34. Du W, Xu X, Zhang D, Lu Q, Gao F. Sci China Chem, 2015, 58: 627–633

    Article  CAS  Google Scholar 

  35. El-Kady MF, Ihns M, Li M, Hwang JY, Mousavi MF, Chaney L, Lech AT, Kaner RB. Proc Natl Acad Sci USA, 2015, 112: 4233–4238

    Article  CAS  PubMed  Google Scholar 

  36. Li D, Zhang Y, Li L, Hu F, Yang H, Wang C, Wang Q. Sci China Chem, 2016, 59: 122–127

    Article  CAS  Google Scholar 

  37. Yu HJ, Wu JH, Fan LQ, Lin YZ, Chen SH, Chen Y, Wang JL, Huang ML, Lin JM, Lan Z, Huang YF. Sci China Chem, 2012, 55: 1319–1324

    Article  CAS  Google Scholar 

  38. Xu J, Li J, Yang Q, Xiong Y, Chen C. Electrochim Acta, 2017, 251: 672–680

    Article  CAS  Google Scholar 

  39. Singu BS, Yoon KR. Electrochim Acta, 2017, 231: 749–758

    Article  CAS  Google Scholar 

  40. Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F. Small, 2015, 11: 1310–1319

    Article  CAS  PubMed  Google Scholar 

  41. Zhou H, Yang X, Lv J, Dang Q, Kang L, Lei Z, Yang Z, Hao Z, Liu ZH. Electrochim Acta, 2015, 154: 300–307

    Article  CAS  Google Scholar 

  42. Bobacka J, Ivaska A, Lewenstam A. Anal Chim Acta, 1999, 385: 195–202

    Article  CAS  Google Scholar 

  43. Liang R, Yin T, Qin W. Anal Chim Acta, 2015, 853: 291–296

    Article  CAS  PubMed  Google Scholar 

  44. Zhou M, Gan S, Cai B, Li F, Ma W, Han D, Niu L. Anal Chem, 2012, 84: 3480–3483

    Article  CAS  PubMed  Google Scholar 

  45. Yu K, He N, Kumar N, Wang NX, Bobacka J, Ivaska A. Electrochim Acta, 2017, 228: 66–75

    Article  CAS  Google Scholar 

  46. Odijk M, van der Wouden EJ, Olthuis W, Ferrari MD, Tolner EA, van den Maagdenberg AMJM, van den Berg A. Sens Actuat B-Chem, 2015, 207: 945–953

    Article  CAS  Google Scholar 

  47. Urbanics R, Leniger-Follert E, Lübbers DW. Pflugers Arch, 1978, 378: 47–53

    Article  CAS  PubMed  Google Scholar 

  48. Heinemann U, Lux HD. Brain Res, 1975, 93: 63–76

    Article  CAS  PubMed  Google Scholar 

  49. Charles AC, Baca SM. Nat Rev Neurol, 2013, 9: 637–644

    Article  PubMed  Google Scholar 

  50. Zhao F, Shi GY, Tian Y. Chin J Anal Chem, 2019, 47: 347–354

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Yuliang Li of Institute of Chemistry, the Chinese Academy of Sciences for kindly providing graphdiyne. This work was supported by the National Natural Science Foundation of China (21790390, 21790391, 21621062, 21435007) for Lanqun Mao, the National Basic Research Program of China (2016YFA0200104), and the Chinese Academy of Sciences (QYZDJ-SSW-SLH030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanqun Mao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Jiang, Y., Hao, J. et al. Graphdiyne oxide enhances the stability of solid contact-based ionselective electrodes for excellent in vivo analysis. Sci. China Chem. 62, 1414–1420 (2019). https://doi.org/10.1007/s11426-019-9516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9516-5

Keywords

Navigation