Skip to main content
Log in

Petroleum heteroatom compounds in various commercial delayed coking liquids: characterized by FT-ICR MS and GC techniques

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Delayed coking is an important petroleum resid conversion process. The processability of coking liquids is known to be dependent on the heteroatom compounds present in the coking liquids. Eight commercial delayed coking liquids were characterized by electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) and gas chromatographic techniques. High relatively abundant heteroatom compounds in the coking liquids were 1–4 aromatic-ring pyridinic nitrogen compounds, carbazoles, benzocarbazoles, phenols, mercaptans, benzothiophenes, dibenzothiophenes, and naphthobenzothiophenes. Coking liquids derived from various feeds had similar compound class types, molecular weight distribution ranges, and double bond equivalents (DBE). However, the concentration of individual compounds and the distribution of DBE versus carbon number of heteroatom compounds varied. A comparison of heteroatom compounds in coker feeds and products revealed the various reaction mechanism of heteroatom compounds occurred during the coking process. The results suggested that molecular-level process models can be developed for optimization of unit operation to obtain desirable products that meet the environmental specifications and quality requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henderson R, Rodwell M, Harji A. Hydrocarb Process, 2005, 84: 47–54

    CAS  Google Scholar 

  2. Schulman B, Biasca F, Johnson H, Dickenson R. Hydrocarb Process, 1993, 72: 100

    CAS  Google Scholar 

  3. Xin S, Jinsong Z, Rong L. Petrol Petrochem Today, 2014, 9: 001

    Google Scholar 

  4. Sawarkar AN, Pandit AB, Samant SD, Joshi JB. Can J Chem Eng, 2007, 85: 1–24

    Article  CAS  Google Scholar 

  5. Hauser A, Alhumaidan F, Al-Rabiah H, Halabi MA. Energy Fuels, 2014, 28: 4321–4332

    Article  CAS  Google Scholar 

  6. Li ZK, Wang G, Shi Q, Xu CM, Gao JS. Ind Eng Chem Res, 2011, 50: 4123–4132

    Article  CAS  Google Scholar 

  7. Jones BW Neuworth MB. Ind Eng Chem Res, 1953, 45: 2704–2705

    Article  CAS  Google Scholar 

  8. Alshareef AH, Scherer A, Stryker JM, Tykwinski RR, Gray MR. Energy Fuels, 2012, 26: 3592–3603

    Article  CAS  Google Scholar 

  9. Xia D, Tian Y, Zhu G, Xiang Y, Luo L, Huang TTS. Energy Fuels, 2007, 21: 1–6

    Article  Google Scholar 

  10. Kelemen SR, Siskin M, Gorbaty ML, Ferrughelli DT, Kwiatek PJ, Brown LD, Eppig CP, Kennedy RJ. Energy Fuels, 2007, 21: 927–940

    Article  CAS  Google Scholar 

  11. Hou B, Cao Z, Chen W, Han J. Pet Sci Technol, 2007, 25: 1013–1025

    Article  CAS  Google Scholar 

  12. Cao Z, Hou B, Chen W, Zhao Q. Pet Sci Technol, 2007, 25: 705–717

    Article  CAS  Google Scholar 

  13. Drushel HV, Sommers AL. Anal Chem, 1966, 38: 19–28

    Article  CAS  Google Scholar 

  14. Bauserman JW, Nguyen KM, Mushrush GW. Pet Sci Technol, 2004, 22: 1491–1505

    Article  CAS  Google Scholar 

  15. Laredo GC, Leyva S, Alvarez R, Mares MT, Castillo J, Cano JL. Fuel, 2002, 81: 1341–1350

    Article  CAS  Google Scholar 

  16. Cheng X, Zhao T, Fu X, Hu Z. Fuel Process Technol, 2004, 85: 1463–1472

    Article  CAS  Google Scholar 

  17. Liu C, Zhang G. Non-Hydrocarbon Compounds in Petroleum and Its Productions. Beijing: China Petrochemical Press, 1991

  18. Zhang Y, Xu C, Shi Q, Zhao S, Chung KH, Hou D. Energy Fuels, 2010, 24: 6321–6326

    Article  CAS  Google Scholar 

  19. Chen X, Shen B, Sun J, Wang C, Shan H, Yang C, Li C. Energy Fuels, 2012, 26: 1707–1714

    Article  CAS  Google Scholar 

  20. Li ZK, Gao JS, Wang G, Shi Q, Xu CM. Ind Eng Chem Res, 2011, 50: 9415–9424

    Article  CAS  Google Scholar 

  21. Marshall AG, Rodgers RP. Accounts Chem Res, 2004, 37: 53–59

    Article  CAS  Google Scholar 

  22. Rodgers RP, Schaub TM, Marshall AG. Anal Chem, 2005, 77: 20A–27A

    Article  Google Scholar 

  23. Zhan D, Fenn JB. Int J Mass Spectrom, 2000, 194: 197–208

    Article  CAS  Google Scholar 

  24. Qian K, Rodgers RP, Hendrickson CL, Emmett MR, Marshall AG. Energy Fuels, 2001, 15: 492–498

    Article  CAS  Google Scholar 

  25. Qian K, Robbins WK, Hughey CA, Cooper HJ, Rodgers RP, Marshall AG. Energy Fuels, 2001, 15: 1505–1511

    Article  CAS  Google Scholar 

  26. Hughey CA, Rodgers RP, Marshall AG, Qian K, Robbins WK. Org Geochem, 2002, 33: 743–759

    Article  CAS  Google Scholar 

  27. Rodgers RP, Mckenna AM. Anal Chem, 2011, 83: 4665–4687

    Article  CAS  Google Scholar 

  28. Purcell JM, Juyal P, Kim DG, Rodgers RP, Hendrickson CL, Marshall AG. Energy Fuels, 2007, 21: 2869–2874

    Article  CAS  Google Scholar 

  29. Liu P, Shi Q, Chung KH, Zhang Y, Pan N, Zhao S, Xu C. Energy Fuels, 2010, 24: 5089–5096

    Article  CAS  Google Scholar 

  30. Alhassan A, Andersson JT. Energy Fuels, 2013, 27: 5770–5778

    Article  CAS  Google Scholar 

  31. Wang M, Zhao S, Chung KH, Xu C, Shi Q. Anal Chem, 2015, 87: 1083–1088

    Article  CAS  Google Scholar 

  32. Shi Q, Pan N, Long H, Cui D, Guo X, Long Y, Chung KH, Zhao S, Xu C, Hsu CS. Energy Fuels, 2013, 27: 108–117

    Article  CAS  Google Scholar 

  33. Ni H, Hsu CS, Ma C, Shi Q, Xu C. Energy Fuels, 2013, 27: 5069–5075

    CAS  Google Scholar 

  34. Cho Y, Ahmed A, Islam A, Kim S. Mass Spectrom Rev, 2015, 34: 248–263

    Article  CAS  Google Scholar 

  35. Shi Q, Xu C, Zhao S, Chung KH, Zhang Y, Gao W. Energy Fuels, 2010, 24: 563–569

    Article  CAS  Google Scholar 

  36. Zhu X, Shi Q, Zhang Y, Pan N, Xu C, Chung KH, Zhao S. Energy Fuels, 2011, 25: 281–287

    Article  CAS  Google Scholar 

  37. Rodgers RP, Marshall AG. Petroleomics: advanced characterization of petroleum-derived materials by fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In: Mullins OC, Sheu EY, Hammami A, Marshall AG. Asphaltenes, Heavy Oils, and Petroleomics. New York: Springer, 2007. 63–93

  38. Kim S, Stanford LA, Rodgers RP, Marshall AG, Walters CC, Qian K, Wenger LM, Mankiewicz P. Org Geochem, 2005, 36: 1117–1134

    Article  CAS  Google Scholar 

  39. Bae E, Na JG, Chung SH, Kim HS, Kim S. Energy Fuels, 2010, 24: 2563–2569

    Article  CAS  Google Scholar 

  40. Zhang Y, Shi Q, Li A, Chung KH, Zhao S, Xu C. Energy Fuels, 2011, 25: 5083–5089

    Article  CAS  Google Scholar 

  41. Damsté JSS, Irene W, Rijpstra C, De Leeuw JW, Schenck P. Org Geochem, 1988, 13: 593–606

    Article  Google Scholar 

  42. Yan X, Shi Q, Xu C, Zhao S, Ke M. Chinese J Chromatogr, 2004, 22: 162–165

    CAS  Google Scholar 

  43. Li S, Shi Q, Pang X, Zhang B, Zhang H. Org Geochem, 2012, 48: 56–80

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U1162204, 21236009, 21376262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Shi.

Electronic supplementary material

11426_2016_168_MOESM1_ESM.docx

Petroleum Heteroatom Compounds in Various Commercial Delayed Coking Liquids: Characterized by FT-ICR MS and GC techniques

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Guo, C., Zhang, L. et al. Petroleum heteroatom compounds in various commercial delayed coking liquids: characterized by FT-ICR MS and GC techniques. Sci. China Chem. 60, 284–292 (2017). https://doi.org/10.1007/s11426-016-0168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0168-1

Keywords

Navigation