Skip to main content
Log in

Efficiency enhancement of P3HT:PCBM polymer solar cells using oligomers DH4T as the third component

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We assembled a ternary blend bulk heterojunction polymer solar cell (PSCs) containing P3HT (donor) and PC61BM (acceptor) incorporated with a dihexyl-quaterthiophene (DH4T) small molecule oligomer as a third component. By optimizing the contents of DH4T, we increased the power conversion efficiency of ternary P3HT:DH4T:PC61BM PSCs to 4.17% from 3.44% of binary P3HT:PC61BM PSCs under AM 1.5 G of 100 mW/cm2 intensity. The major improvement is from the increase of the short circuit current and fill factor that is due to the increased light absorption at short wavelength, the balanced charge carrier transportation and the enhanced hole evacuation by a DH4T-enriched layer at the anode interface. In this work, we demonstrate that the efficiency of the PSCs can be enhanced by using low-bandgap conjugated polymer and its oligomer as donors and fullerene derivatives as acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107: 1324–1338

    Article  Google Scholar 

  2. Li N, Stubhan T, Luechinger NA, Halim SC, Matt GJ, Ameri T, Brabec CJ. Inverted structure organic photovoltaic devices employing a low temperature solution processed WO3 anode buffer layer. Org Electron, 2012, 13: 2479–2484

    Article  CAS  Google Scholar 

  3. Dang MT, Hirsch L, Wantz G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater, 2011, 23: 3597–3602

    Article  CAS  Google Scholar 

  4. Tan ZA, Li SS, Wang FZ, Qian DP, Lin J, Hou JH, Li YF. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Sci Rep, 2014, 4: 4691

    Google Scholar 

  5. Zhang MJ, Guo X, Ma W, Ade H, Hou JH. A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv Mater, 2014, 26: 5880–5885

    Article  CAS  Google Scholar 

  6. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007, 317: 222–225

    Article  CAS  Google Scholar 

  7. Zhang MJ, Gu Y, Guo X, Liu F, Zhang SQ, Huo LJ, Russell TP, Hou JH. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. Adv Mater, 2013, 25: 4944–4949

    Article  CAS  Google Scholar 

  8. Tan ZA, Li LJ, Wang FZ, Xu Q, Li SS, Sun G, Tu XH, Hou XL, Hou JH, Li YF. Solution-processed rhenium oxide: a versatile anode buffer layer for high performance polymer solar cells with enhanced light harvest. Adv Energ Mater, 2014, 4: 1300884

    Google Scholar 

  9. Guo X, Zhang MJ, Cui CH, Hou JH, Li YF. Efficient polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct fabricated with non-halogenated solvents. ACS Appl Mater Interf, 2014, 6: 8190–8198

    Article  CAS  Google Scholar 

  10. Mihailetchi VD, Xie HX, de Boer B, Koster LJA, Blom PWM. Charge transport and photocurrent generation in poly (3-hexyl-thiophene): methanofullerene bulk-heterojunction solar cells. Adv Funct Mater, 2006, 16: 699–708

    Article  CAS  Google Scholar 

  11. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005, 4: 864–868

    Article  CAS  Google Scholar 

  12. Guo X, Cui CH, Zhang MJ, Huo LJ, Huang Y, Hou JH, Li Y. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C-70 bisadduct with solvent additive. Energ Environ Sci, 2012, 5: 7943–7949

    Article  CAS  Google Scholar 

  13. Zhang MJ, Guo X, Zhang SQ, Hou JH. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Adv Mater, 2014, 26: 1118–1123

    Article  CAS  Google Scholar 

  14. Hayashi Y, Sakuragi H, Soga I, Alexandrou I, Amaratunga GAJ. Bulk heterojunction solar cells based on two kinds of organic polymers and fullerene derivative. Colloid Surface A, 2008, 313: 422–425

    Article  Google Scholar 

  15. Chen MC, Liaw DJ, Huang YC, Wu HY, Tai Y. Improving the efficiency of organic solar cell with a novel ambipolar polymer to form ternary cascade structure. Sol Energ Mat Sol C, 2011, 95: 2621–2627

    Article  CAS  Google Scholar 

  16. Kim H, Shin M, Kim Y. Distinct annealing temperature in polymer: fullerene:polymer ternary blend solar cells. J Phys Chem C, 2009, 113: 1620–1623

    Article  CAS  Google Scholar 

  17. Machui F, Rathgeber S, Li N, Ameri T, Brabec CJ. Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices. J Mater Chem, 2012, 22: 15570–15577

    Article  CAS  Google Scholar 

  18. Yuan K, Chen L, Chen Y. Photovoltaic performance enhancement of P3HT/PCBM solar cells driven by incorporation of conjugated liquid crystalline rod-coil block copolymers. J Mater Chem C, 2014, 2: 3835–3845

    Article  CAS  Google Scholar 

  19. An QS, Zhang FJ, Zhang J, Tang WH, Wang ZX, Li LL, Xu Z, Teng F, Wang YS. Enhanced performance of polymer solar cells through sensitization by a narrow bandgap polymer. Sol Energ Mat Sol C, 2013, 118: 30–35

    Article  CAS  Google Scholar 

  20. Khlyabich PP, Burkhart B, Thompson BC. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J Am Chem Soc, 2012, 134: 9074–9077

    Article  CAS  Google Scholar 

  21. Yang LQ, Zhou HX, Price SC, You W. Parallel-like bulk heterojunction polymer solar cells. J Am Chem Soc, 2012, 134: 5432–5435

    Article  CAS  Google Scholar 

  22. Bechara R, Leclerc N, Leveque P, Richard F, Heiser T, Hadziioannou G. Efficiency enhancement of polymer photovoltaic devices using thieno-thiophene based copolymers as nucleating agents for polythiophene crystallization. Appl Phys Lett, 2008, 93: 013306

    Article  Google Scholar 

  23. Honda S, Nogami T, Ohkita H, Benten H, Ito S. Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. ACS Appl Mater Interf, 2009, 1: 804–810

    Article  CAS  Google Scholar 

  24. Honda S, Ohkita H, Benten H, Ito S. Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells. Chem Commun, 2010, 46: 6596–6598

    Article  CAS  Google Scholar 

  25. Xu ZX, Roy VAL, Low KH, Che CM. Bulk heterojunction photovoltaic cells based on tetra-methyl substituted copper(II) phthalocyanine:P3HT:PCBM composite. Chem Commun, 2011, 47: 9654–9656

    Article  CAS  Google Scholar 

  26. Peet J, Tamayo AB, Dang XD, Seo JH, Nguyena TQ. Small molecule sensitizers for near-infrared absorption in polymer bulk heterojunction solar cells. Appl Phys Lett, 2008, 93: 163306

    Article  Google Scholar 

  27. Sharma SS, Sharma GD, Mikroyannidis JA. Improved power conversion efficiency of bulk heterojunction poly(3-hexylthi-ophene):PCBM photovoltaic devices using small molecule additive. Sol Energ Mat Sol C, 2011, 95: 1219–1223

    Article  CAS  Google Scholar 

  28. Choi JW, Kulshreshtha C, Kennedy GP, Kwon JH, Jung SH, Chae M. Solution-processed bulk heterojunction organic solar cells with high polarity small molecule sensitizer. Sol Energ Mat Sol C, 2011, 95: 2069–2076

    Article  CAS  Google Scholar 

  29. Mikroyannidis JA, Tsagkournos DV, Sharma SS, Kumar A, Vijay YK, Sharma GD. Efficient bulk heterojunction solar cells based on low band gap bisazo dyes containing anthracene and/or pyrrole units. Sol Energ Mat Sol C, 2010, 94: 2318–2327

    Article  CAS  Google Scholar 

  30. Russell DM, Newsome CJ, Li SP, Kugler T, Ishida M, Shimoda T. Blends of semiconductor polymer and small molecular crystals for improved-performance thin-film transistors. Appl Phys Lett, 2005, 87: 222109

    Article  Google Scholar 

  31. Hwang DH, Kim SK, Park MJ, Lee JH, Koo BW, Kang IN, Kim SH, Zyung T. Conjugated polymers based on phenothiazine and fluorene in light-emitting diodes and field effect transistors. Chem Mater, 2004, 16: 1298–1303

    Article  CAS  Google Scholar 

  32. Payne MM, Parkin SR, Anthony JE, Kuo CC, Jackson TN. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/(V s). J Am Chem Soc, 2005, 127: 4986–4987

    Article  CAS  Google Scholar 

  33. Wu YL, Li YN, Gardner S, Ong BS. Indolo[3,2-b]carbazole-based thin-film transistors with high mobility and stability. J Am Chem Soc, 2005, 127: 614–618

    Article  CAS  Google Scholar 

  34. Garnier F, Hajlaoui R, El Kassmi A, Horowitz G, Laigre L, Porzio W, Armanini M, Provasoli F. Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem Mater, 1998, 10: 3334–3339

    Article  CAS  Google Scholar 

  35. Halik M, Klauk H, Zschieschang U, Schmid G, Ponomarenko S, Kirchmeyer S, Weber W. Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv Mater, 2003, 15: 917–922

    Article  CAS  Google Scholar 

  36. Paul KE, Wong WS, Ready SE, Street RA. Additive jet printing of polymer thin-film transistors. Appl Phys Lett, 2003, 83: 2070–2072

    Article  CAS  Google Scholar 

  37. Lim E, Jung BJ, Chikamatsu M, Azumi R, Yase K, Do LM, Shim HK. Synergistic effect of polymer and oligomer blends for solution-processable organic thin-film transistors. Org Electron, 2008, 9: 952–958

    Article  CAS  Google Scholar 

  38. Burke KB, Belcher WJ, Thomsen L, Watts B, McNeill CR, Ade H, Dastoor PC. Role of solvent trapping effects in determining the structure and morphology of ternary blend organic devices. Macromolecules, 2009, 42: 3098–3103

    Article  CAS  Google Scholar 

  39. Huang JH, Velusamy M, Ho KC, Lin JT, Chu CW. A ternary cascade structure enhances the efficiency of polymer solar cells. J Mater Chem, 2010, 20: 2820–2825

    Article  CAS  Google Scholar 

  40. Goodman AM. Double extraction of uniformly generated electron-hole pairs from insulators with noninjecting contacts. J Appl Phys, 1971, 42: 2823

    Article  CAS  Google Scholar 

  41. Guo X, Zhang MJ, Tan JH, Zhang SQ, Huo LJ, Hu WP, Li YF, Hou JH. Influence of D/A ratio on photovoltaic performance of a highly efficient polymer solar cell system. Adv Mater, 2012, 24: 6536–6541

    Article  CAS  Google Scholar 

  42. Mihailetchi VD, Wildeman J, Blom PWM. Space-charge limited photocurrent. Phys Rev Lett, 2005, 94: 126602

    Article  CAS  Google Scholar 

  43. Chen TA, Wu XM, Rieke RD. Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by rieke zinc: their characterization and solid-state properties. J Am Chem Soc, 1995, 117: 233–244

    Article  CAS  Google Scholar 

  44. Li G, Shrotriya V, Yao Y, Yang Y. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys, 2005, 98: 043704

    Article  Google Scholar 

  45. Yang XN, van Duren JKJ, Rispens MT, Hummelen JC, Janssen RAJ, Michels MAJ, Loos J. Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater, 2004, 16: 802–806

    Article  CAS  Google Scholar 

  46. Li H, Tang HW, Li LG, Xu WT, Zhao XL, Yang XN. Solvent-soaking treatment induced morphology evolution in P3HT/PCBM composite films. J Mater Chem, 2011, 21: 6563–6568

    Article  CAS  Google Scholar 

  47. He C, Zhong CM, Wu HB, Yang RQ, Yang W, Huang F, Bazan GC, Cao Y. Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes. J Mater Chem, 2010, 20: 2617–2622

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhang or Can Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, P., Yang, D., Zhang, F. et al. Efficiency enhancement of P3HT:PCBM polymer solar cells using oligomers DH4T as the third component. Sci. China Chem. 58, 1169–1175 (2015). https://doi.org/10.1007/s11426-015-5328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5328-7

Keywords

Navigation