Skip to main content
Log in

Hierarchical magnetic core-shell nanostructures for microwave absorption: Synthesis, microstructure and property studies

  • Feature Articles
  • Progress of Projects Supported by NSFC Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Core-shell nanostructures have attracted considerable attention in the past decades because of their fundamental scientific significance and many technological applications. Recently, it has been reported that the core-shell nanostructures with advanced compositions and complicated morphologies show great potential as high-performance microwave absorbers due to their unique properties, such as large surface areas, multi-functionalities and synergistic effects between the interior core and outer shell. This review article focuses on the recent progress in synthesis and characterization of hierarchical magnetic core-shell nanostructures for microwave absorption applications based on our own work. In addition, several future trends in this field for next-generation microwave absorbers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev, 2009, 38: 372–390

    Article  CAS  Google Scholar 

  2. Hammond PT. Form and function in multilayer assembly: New applications at the nanoscale. Adv Mater, 2004, 16(15): 1271–1293

    Article  CAS  Google Scholar 

  3. Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y. Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed, 2012, 51(9): 2229–2233

    Article  CAS  Google Scholar 

  4. Zhai X, Yu M, Cheng Z, Hou Z, Yang D, Kang X, Dai Y, Wang D, Lin J. Rattle-type hollow CaWO4: Tb3+@SiO2 nanocapsules as carriers for drug delivery. Dalton Trans, 2011, 40(48): 12818–12825

    Article  CAS  Google Scholar 

  5. Liu J, Qiao SZ, Chen JS, Lou XW, Xing X, Lu GQ. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun, 2011, 47(47): 12578–12591

    Article  CAS  Google Scholar 

  6. Lee I, Joo JB, Yin Y, Zaera F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew Chem Int Ed, 2011, 50(43): 10208–10211

    Article  CAS  Google Scholar 

  7. Yan LA, Zhao F, Li SJ, Hu ZB, Zhao YL. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3(2): 362–382

    Article  CAS  Google Scholar 

  8. Lou XW, Li CM, Archer LA. Designed synthesis of coaxial SnO2@ carbon hollow nanospheres for highly reversible lithium storage. Adv Mater, 2009, 21(24): 2536–2539

    Article  CAS  Google Scholar 

  9. Huo J, Wang L, Yu H. Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci, 2009, 44(15): 3917–3927

    Article  CAS  Google Scholar 

  10. Wang L, Wu H, Shen Z, Guo S, Wang Y. Enhanced microwave absorption properties of Ni-doped ordered mesoporous carbon/polyaniline nanocomposites. Mater Sci Eng B, 2012, 177(18): 1649–1654

    Article  CAS  Google Scholar 

  11. Li N, Cao MH, Hu CW. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers. J Mater Chem, 2012, 22(35): 18426–18432

    Article  CAS  Google Scholar 

  12. Xu MH, Zhong W, Qi XS, Au CT, Deng Y, Du YW. Highly stable Fe-Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties. J Alloys Compd, 2010, 495(1): 200–204

    Article  CAS  Google Scholar 

  13. Zhou M, Zhang X, Wei J, Zhao S, Wang L, Feng B. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J Phys Chem C, 2010, 115(5): 1398–1402

    Article  Google Scholar 

  14. Zhu CL, Zhang ML, Qiao YJ, Xiao G, Zhang F, Chen YJ. Fe3O4/ TiO2 core/shell nanotubes: Synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C, 2010, 114(39): 16229–16235

    Article  CAS  Google Scholar 

  15. Chen YJ, Gao P, Wang RX, Zhu CL, Wang LJ, Cao MS, Jin HB. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J Phys Chem C, 2009, 113(23): 10061–10064

    Article  CAS  Google Scholar 

  16. Chen YJ, Zhang F, Zhao GG, Fang XY, Jin HB, Gao P, Zhu CL, Cao MS, Xiao G. Synthesis, Multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods. J Phys Chem C, 2010, 114(20): 9239–9244

    Article  CAS  Google Scholar 

  17. Wang FL, Liu JR, Kong J, Zhang ZJ, Wang XZ, Itoh M, Machida K. Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J Mater Chem, 2011, 21(12): 4314–4320

    Article  CAS  Google Scholar 

  18. Liu J, Qiao SZ, Hu QH, Lu GQ. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small, 2011, 7: 425–443

    Article  CAS  Google Scholar 

  19. Yan SJ, Zhen L, Xu CY, Jiang JT, Shao WZ, Tang JK. Synthesis, characterization and electromagnetic properties of Fe1−x Cox alloy flower-like microparticles. J Magn Magn Mater, 2011, 323(5): 515–520

    Article  CAS  Google Scholar 

  20. Liu J, Che R, Chen H, Zhang F, Xia F, Wu Q, Wang M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small, 2012, 8(8): 1214–1221

    Article  CAS  Google Scholar 

  21. Liu JW, Xu JJ, Che RC, Chen HJ, Liu MM, Liu ZW. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem Eur J, 2013, 19(21): 6746–6752

    Article  CAS  Google Scholar 

  22. Wu XJ, Xu D. Formation of yolk/SiO2 shell structures using surfactant mixtures as template. J Am Chem Soc, 2009, 131(8): 2774–2775

    Article  CAS  Google Scholar 

  23. Suzuki T, Okazaki KI, Suzuki S, Shibayama T, Kuwabata S, Torimoto T. Nanosize-controlled syntheses of indium metal particles and hollow indium oxide particles via the sputter deposition technique in ionic liquids. Chem Mater, 2010, 22(18): 5209–5215

    Article  CAS  Google Scholar 

  24. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science, 2004, 304(5671): 711–714

    Article  CAS  Google Scholar 

  25. Fang Q, Xuan S, Jiang W, Gong X. Yolk-like micro/nanoparticles with superparamagnetic iron oxide cores and hierarchical nickel silicate shells. Adv Funct Mater, 2011, 21(10): 1902–1909

    Article  CAS  Google Scholar 

  26. Zhao W, Chen H, Li Y, Li L, Lang M, Shi J. Uniform Rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property. Adv Funct Mater, 2008, 18(18): 2780–2788

    Article  CAS  Google Scholar 

  27. Liu JW, Cheng J, Che RC, Xu JJ, Liu MM, Liu ZW. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl Mater Interfaces, 2013, 5: 2503–2509

    Article  CAS  Google Scholar 

  28. Kim M, Sohn K, Na BH, Hyeon T. Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Lett, 2002, 2(12): 1383–1387

    Article  CAS  Google Scholar 

  29. Li W, Deng YH, Wu ZX, Qian XF, Yang JP, Wang Y, Gu D, Zhang F, Tu B, Zhao DY. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J Am Chem Soc, 2011, 133: 15830–15833

    Article  CAS  Google Scholar 

  30. Lai X, Li J, Korgel BA, Dong Z, Li Z, Su F, Du J, Wang D. General Synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew Chem Int Ed, 2011, 123(12): 2790–2793

    Article  Google Scholar 

  31. Liu JW, Cheng J, Che RC, Xu JJ, Liu MM, Liu ZW. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J Phys Chem C, 2013, 117(1): 489–495

    Article  CAS  Google Scholar 

  32. Qin Y, Che RC, Liang CY, Zhang J, Wen ZW. Synthesis of Au and Au-CuO cubic microcages via an in situ sacrificial template approach. J Mater Chem, 2011, 21(11): 3960–3965

    Article  CAS  Google Scholar 

  33. Sun G, Dong B, Cao M, Wei B, Hu C. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater, 2011, 23(6): 1587–1593

    Article  CAS  Google Scholar 

  34. Guo XH, Deng YH, Gu D, Che RC, Zhao DY. Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. J Mater Chem, 2009, 19(37): 6706–6712

    Article  CAS  Google Scholar 

  35. Zhou J, He J, Li G, Wang T, Sun D, Ding X, Zhao J, Wu S. Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers. J Phys Chem C, 2010, 114(17): 7611–7617

    Article  CAS  Google Scholar 

  36. Chen YJ, Gao P, Zhu CL, Wang RX, Wang LJ, Cao MS, Fang XY. Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J Appl Phys, 2009, 106(5): 054303–054304

    Article  Google Scholar 

  37. Wu XJ, Xu D. Soft template synthesis of yolk/silica shell particles. Adv Mater, 2010, 22(13): 1516–1520

    Article  CAS  Google Scholar 

  38. Liu JW, Xu JJ, Che RC, Chen HJ, Liu ZW, Xia F. Hierarchical magnetic yolk-shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. J Mater Chem, 2012, 22(18): 9277–9284

    Article  CAS  Google Scholar 

  39. Yang RB, Liang WF. Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers. J Appl Phys, 2011, 109(7): 07A311–313

    Google Scholar 

  40. Wang Z, Zhou L, Lou XW. Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater, 2012, 24(14): 1903–1911

    Article  CAS  Google Scholar 

  41. Zhuo RF, Feng HT, Chen JT, Yan D, Feng JJ, Li HJ, Geng BS, Cheng S, Xu XY, Yan PX. Multistep synthesis, growth mechanism, optical, and microwave absorption properties of ZnO dendritic nanostructures. J Phys Chem C, 2008, 112(31): 11767–11775

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RenChao Che.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Xu, J., Liu, Z. et al. Hierarchical magnetic core-shell nanostructures for microwave absorption: Synthesis, microstructure and property studies. Sci. China Chem. 57, 3–12 (2014). https://doi.org/10.1007/s11426-013-5010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5010-x

Keywords

Navigation