Skip to main content
Log in

Phase behavior and interfacial properties of symmetric polymeric ternary blends A/B/AB

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the phase behavior and interfacial properties of symmetric ternary polymeric blends A/B/AB are studied by dissipative particle dynamics (DPD) simulations. By using the structure factor and nematic order parameter, we carefully characterized the diversified phases and phase transitions, and established the phase diagram of such symmetric ternary blends. It can be generally divided into four regions: disordered phase (DIS) region at high temperature, ordered lamellar phase (LAM) region, bicontinuous microemulsion (BµE) channel and phase-separated phase (2P) region at low temperature with the increase of the total volume fractions of homopolymers Φ H, which shows good accordance with that in previous experimental and theoretical reports. Furthermore, we calculated the elastic constants of 2P and LAM phase, and discussed the transition mechanisms from 2P and LAM to BμE phase, respectively. The results show a direct relevance between the phase transitions and the change of interfacial properties. Finally, we also demonstrate that the BμE channel becomes narrower in lower temperature caused by the temperature dependence of interfacial properties of ternary blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binder K. Phase-Transitions in Polymer Blends and Block-Copolymer Melts—Some Recent Developments. Springer-Verlag: Berlin, 1994, 112

    Google Scholar 

  2. Anastasiadis SH. Interfacial Tension in Binary Polymer Blends and the Effects of Copolymers as Emulsifying Agents. Springer-Verlag: Berlin, 2011, 238

    Google Scholar 

  3. Hong KM and Noolandi J. Theory of interfacial-tension in ternary homopolymer-solvent systems. Macromolecules, 1981, 14: 736–742

    Article  CAS  Google Scholar 

  4. Noolandi J and Hong KM. Interfacial properties of immiscible homopolymer blends in the presence of block copolymers. Macromolecules, 1982, 15: 482–492

    Article  CAS  Google Scholar 

  5. Bates FS, Maurer WW, Lipic PM, Hillmyer MA, Almdal K, Mortensen K, Fredrickson GH, Lodge TP. Polymeric bicontinuous microemulsions. Phys Rev Lett, 1997, 79: 849–852

    Article  CAS  Google Scholar 

  6. Hillmyer MA, Maurer WW, Lodge TP, Bates FS, Almdal K. Model bicontinuous microemulsions in ternary homopolymer block copolymer blends. J Phys Chem B, 1999, 103: 4814–4824

    Article  CAS  Google Scholar 

  7. Liu GL, Stoykovich MP, Ji SX, Stuen KO, Craig GSW, Nealey PF. Phase behavior and dimensional scaling of symmetric block copolymer-homopolymer ternary blends in thin films. Macromo-lecules, 2009, 42: 3063–3072

    Article  CAS  Google Scholar 

  8. Messe L, Corvazier L, Ryan AJ. Effect of the molecular weight of the homopolymers on the morphology in ternary blends of polystyrene, polyisoprene, polystyrene-blockpolyisoprene copolymer. Polymer, 2003, 44: 7397–7403

    Article  CAS  Google Scholar 

  9. Morkved TL, Stepanek P, Krishnan K, Bates FS, Lodge TP. Static and dynamic scattering from ternary polymer blends: Bicontinuous microemulsions, Lifshitz lines, and amphiphilicity. J Chem Phys, 2001, 114: 7247–7259

    Article  CAS  Google Scholar 

  10. Pipich V, Schwahn D, Willner L. Ginzburg number of a homopolymer-diblock copolymer mixture covering the 3D-Ising, isotropic Lifshitz, and Brasovskii classes of critical universality. Phys Rev Lett, 2005, 94: 117801

    Article  Google Scholar 

  11. Stoykovich MP, Edwards EW, Solak HH, Nealey PF. Phase behavior of symmetric ternary block copolymer-homopolymer blends in thin films and on chemically patterned surfaces Phys Rev Lett, 2006, 97: 147802

    Article  Google Scholar 

  12. Corvazier L, Messe L, Salou CLO, Young RN, Fairclough JPA, Ryan AJ. Lamellar phases and microemulsions in model ternary blends containing amphiphilic block copolymers. J Mater Chem, 2001, 11: 2864–2874

    Article  CAS  Google Scholar 

  13. Bates FS, Maurer W, Lodge TP, Schulz MF, Matsen MW, Almdal K, Mortensen K. Isotropic lifshitz behavior in block copolymer-homopolymer blends. Phys Rev Lett, 1995, 75: 4429–4432

    Article  CAS  Google Scholar 

  14. Duchs D, Ganesan V, Fredrickson GH, Schmid F. Fluctuation effects in ternary AB+A+B polymeric emulsions. Macromolecules, 2003, 36: 9237–9248

    Article  Google Scholar 

  15. Duchs D, Schmid F. Formation and structure of the microemulsion phase in two-dimensional ternary AB+A+B polymeric emulsions. J Chem Phys, 2004, 121: 2798–2805

    Article  CAS  Google Scholar 

  16. Kielhorn L, Muthukumar M. Fluctuation theory of diblock copolymer/homopolymer blends and its effects on the Lifshitz point. J Chem Phys, 1997, 107: 5588–5608

    Article  CAS  Google Scholar 

  17. Komura S. Mesoscale structures in microemulsions. J Phys: Condens Matter, 2007, 19: 463101

    Article  Google Scholar 

  18. Kodama H, Komura S, Tamura K. Mean-field approach to polymeric microemulsions. Europhys Lett, 2001, 53: 46–52

    Article  CAS  Google Scholar 

  19. Komura S, Kodama H, Tamura K. Real-space mean-field approach to polymeric ternary systems. J Chem Phys, 2002, 117: 9903–9919

    Article  CAS  Google Scholar 

  20. Fleury G, Bates FS. Hierarchically structured bicontinuous polymeric microemulsions. Soft Matter, 2010, 6: 2751–2759

    Article  CAS  Google Scholar 

  21. Gan LM, Chow PY, Liu ZL, Han M, Quek CH. The zwitterion effect in proton exchange membranes as synthesised by polymerisation of bicontinuous microemulsions. Chem Commun, 2005: 4459–4461

    Google Scholar 

  22. Gan LM, Liu J, Poon LP, Chew CH, Gan LH. Microporous polymeric composites from bicontinuous microemulsion polymerization using a polymerizable nonionic surfactant. Polymer, 1997, 38: 5339–5345

    Article  CAS  Google Scholar 

  23. Jones BH, Lodge TP. High-Temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template. J Am Chem Soc, 2009, 131: 1676–1677

    Article  CAS  Google Scholar 

  24. Jones BH, Lodge TP. Nanoporous materials derived from polymeric bicontinuous microemulsions. Chem Mater, 2010, 22: 1279–1281

    Article  CAS  Google Scholar 

  25. Wang LS, Chow PY, Phan TT, Lim IJ, Yang YY. Fabrication and characterization of nanostructured and thermosensitive polymer membranes for wound healing and cell grafting. Adv Funct Mater, 2006, 16: 1171–1178

    Article  CAS  Google Scholar 

  26. Zhou N, Bates FS, Lodge TP. Mesoporous membrane templated by a polymeric bicontinuous microemulsion. Nano Lett, 2006, 6: 2354–2357

    Article  CAS  Google Scholar 

  27. Matsen MW. Elastic properties of a diblock copolymer monolayer and their relevance to bicontinuous microemulsion. J Chem Phys, 1999, 110: 4658–4667

    Article  CAS  Google Scholar 

  28. Laradji M, Desai RC. Elastic properties of homopolymer-homopolymer interfaces containing diblock copolymers. J Chem Phys, 1998, 108: 4662–4674

    Article  CAS  Google Scholar 

  29. Laradji M, Mouritsen OG. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study. J Chem Phys, 2000, 112: 8621–8630

    Article  CAS  Google Scholar 

  30. Thompson RB, Matsen MW. Improving polymeric microemulsions with block copolymer polydispersity. Phys Rev Lett, 2000, 85: 670–673

    Article  CAS  Google Scholar 

  31. Bai ZQ, Guo HX. Interfacial properties and phase transitions in ternary symmetric homopolymer-copolymer blends: A dissipative particle dynamics study. Polymer, 2013, 54: 2146–2157

    Article  CAS  Google Scholar 

  32. Peter C, Kremer K. Multiscale simulation of soft matter systems. Faraday Discuss, 2010, 144: 9–24

    Article  CAS  Google Scholar 

  33. Groot RD, Warren PB. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys, 1997, 107: 4423–4435

    Article  CAS  Google Scholar 

  34. Hoogerbrugge PJ, Koelman J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett, 1992, 19: 155–160

    Article  Google Scholar 

  35. Espanol P, Warren P. Statistical-mechanics of dissipative particle dynamics. Europhys Lett, 1995, 30: 191–196

    Article  CAS  Google Scholar 

  36. Groot RD, Madden TJ. Dynamic simulation of diblock copolymer microphase separation. J Chem Phys, 1998, 108: 8713–8724

    Article  CAS  Google Scholar 

  37. He LL, Zhang LX, Xia A, Liang HJ. Effect of nanorods on the mesophase structure of diblock copolymers. J Chem Phys, 2009, 130: 144907

    Article  Google Scholar 

  38. He PT, Li XJ, Deng MG, Chen T, Liang HJ. Complex micelles from the self-assembly of coil-rod-coil amphiphilic triblock copolymers in selective solvents. Soft Matter, 2010, 6: 1539–1546

    Article  CAS  Google Scholar 

  39. Wu SG, Guo HX. Simulation study of protein-mediated vesicle fusion. J Phys Chem B, 2009, 113: 589–591

    Article  CAS  Google Scholar 

  40. Wu SG, Guo HX. Dissipative particle dynamics simulation study of the bilayer-vesicle transition. Sci China Ser B-Chem, 2008, 51: 743–750

    Article  CAS  Google Scholar 

  41. Bai ZQ, Xia YZ, Shi SX, Guo HX. Dissipative particle dynamics simulation study on the phase behavior of Pe/Peo/Pe-Peo symmetric ternary blends. Acta Polym Sin, 2011: 530–536

    Google Scholar 

  42. Zhang ZM, Guo HX. The phase behavior, structure, and dynamics of rodlike mesogens with various flexibility using dissipative particle dynamics simulation. J Chem Phys, 2010, 133: 144911

    Article  Google Scholar 

  43. Zhang ZM, Guo HX. A computer simulation study of the anchoring transitions driven by rod-coil amphiphiles at aqueous-liquid crystal interfaces. Soft Matter, 2012, 8: 5168–5174

    Article  CAS  Google Scholar 

  44. Huang MX, Li ZQ, Guo HX. The effect of Janus nanospheres on the phase separation of immiscible polymer blends via dissipative particle dynamics simulations. Soft Matter, 2012, 8: 2834–2845

    Google Scholar 

  45. Alexeev A, Uspal WE, Balazs AC. Harnessing Janus nanoparticles to create controllable pores in membranes. Acs Nano, 2008, 2: 1117–1122

    Article  CAS  Google Scholar 

  46. Ding HM, Tian WD, Ma YQ. Designing nanoparticle translocation through membranes by computer simulations. Acs Nano, 2012, 6: 1230–1238

    Article  CAS  Google Scholar 

  47. Masoud H, Alexeev A. Controlled release of nanoparticles and macromolecules from responsive microgel capsules. Acs Nano, 2011, 6: 212–219

    Article  Google Scholar 

  48. Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol, 2010, 5: 579–583

    Article  CAS  Google Scholar 

  49. Yue TT, Zhang XR. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. Acs Nano, 2012, 6: 3196–3205

    Article  CAS  Google Scholar 

  50. Pons-Siepermann IC, Glotzer SC. Design of patchy particles using quaternary self-assembled monolayers. Acs Nano, 2012, 6: 3919–3924

    Article  CAS  Google Scholar 

  51. Santos A, Millan JA, Glotzer SC. Facetted patchy particles through entropy-driven patterning of mixed ligand SAMS. Nanoscale, 2012, 4: 2640–2650

    Article  CAS  Google Scholar 

  52. Singh C, Ghorai PK, Horsch MA, Jackson AM, Larson RG, Stellacci F, Glotzer SC. Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. Phys Rev Lett, 2007, 99: 226106

    Article  Google Scholar 

  53. Groot RD. Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants. J Chem Phys, 2003, 118: 11265–11277

    Article  CAS  Google Scholar 

  54. Yan LT, Yu XB. Complexes comprised of a dendrimer and a vesicle: Role of vesicle size and the surface tension of the vesicle membrane. Nanoscale, 2012, 3: 3812–3818

    Article  Google Scholar 

  55. Yan LT, Yu XB. Enhanced permeability of charged dendrimers across tense lipid bilayer membranes. Acs Nano, 2009, 3: 2171–2176

    Article  CAS  Google Scholar 

  56. Soto-Figueroa C, Hidalgo MR, Magadn JMM, Vicente L. Dissipative particle dynamics study of order-order phase transition of BCC, HPC, OBDD, and LAM structures of the poly(styrene)-poly(isoprene) diblock copolymer. Macromolecules, 2008, 41: 3297–3304

    Article  CAS  Google Scholar 

  57. Soto-Figueroa C, Vicente L, Magadn JMM, Hidalgo MR. Self-organization process of ordered structures in linear and star poly(styrene)-poly(isoprene) block copolymers: Gaussian models and mesoscopic parameters of polymeric systems. J Phys Chem B, 2007, 111: 11756–11764

    Article  CAS  Google Scholar 

  58. Gai JG, Li HL, Schrauwen C, Hu GH. Dissipative particle dynamics study on the phase morphologies of the ultrahigh molecular weight polyethylene/polypropylene/poly(ethylene glycol) blends. Polymer, 2009, 50: 336–346

    Article  CAS  Google Scholar 

  59. Rubinstein M, Colby RH. Polymer Physics. Oxford University Press: Oxford, 2003

    Google Scholar 

  60. Grest GS, Lacasse MD, Kremer K, Gupta AM. Efficient continuum model for simulating polymer blends and copolymers. J Chem Phys, 1996, 105: 10583–10594

    Article  CAS  Google Scholar 

  61. Larson RG. Monte-carlo simulation of microstructural transitions in surfactant systems. J Chem Phys, 1996, 96: 7904–7918

    Article  Google Scholar 

  62. Larson RG. Simulation of lamellar phase-transitions in block-copolymers. Macromolecules, 1994, 27: 4198–4203

    Article  CAS  Google Scholar 

  63. Jo WH, Kim SH. Monte Carlo simulation of the phase separation dynamics of polymer blends in the presence of block copolymers. 1. Effect of the interaction energy and chain length of the block copolymers. Macromolecules, 1996, 29: 7204–7211

    Article  CAS  Google Scholar 

  64. Teubner M, Strey R. Origin of the scattering peak in microemulsions. J Chem Phys, 1987, 87: 3195–3200

    Article  CAS  Google Scholar 

  65. Wilson MR, Allen MP. Computer simulation study of liquid crystal formation in a semi-flexible system of linked hard spheres. Mol Phys, 1993, 80: 277–295

    Article  CAS  Google Scholar 

  66. Guo HX. Nonequilibrium molecular dynamics simulation study on the orientation transition in the amphiphilic lamellar phase under shear flow. Jo Chem Phys, 2006, 125: 214902

    Article  Google Scholar 

  67. de Gennes PG, Prost J. The Physics of Liquid Crystals. Clarendon, Oxford: Oxford University Press, 1987

    Google Scholar 

  68. Tanaka H, Hasegawa H, Hashimoto T. Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low-molecular-weight homopolymers. Macromolecules, 1991, 24: 240–251

    Article  CAS  Google Scholar 

  69. Tanaka H, Hashimoto T. Ordered structures of block polymer homopolymer mixtures. 3. Temperature-dependence. Macromo-lecules, 1991, 24: 5713–5720

    Article  CAS  Google Scholar 

  70. Dadmun MD, Muthukumar M, Schwahn D, Springer T. Small-angle neutron scattering of poly(gamma-benzyl L-glutamate) in deuterated benzyl alcohol. Macromolecules, 1996, 29: 207–211

    Article  CAS  Google Scholar 

  71. Fredrickson GH, Bates FS. Design of bicontinuous polymeric microemulsions. J Polym Sci Part B: Polym Phys, 1997, 35: 2775–2786

    Article  CAS  Google Scholar 

  72. Pipich, V, Schwahn D, Willner L. Ginzburg number of a homopolymer-diblock copolymer mixture covering the 3D-Ising, isotropic Lifshitz, and Brasovskii classes of critical universality. Phys Rev Lett, 2005, 94: 117801

    Article  Google Scholar 

  73. Muller M, Schick M. Bulk and interfacial thermodynamics of a symmetric, ternary homopolymer-copolymer mixture: A Monte Carlo study. J Chem Phys, 1996, 105: 8885–8901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongXia Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Bai, Z., Yang, K. et al. Phase behavior and interfacial properties of symmetric polymeric ternary blends A/B/AB. Sci. China Chem. 56, 1710–1721 (2013). https://doi.org/10.1007/s11426-013-4928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4928-3

Keywords

Navigation