Skip to main content
Log in

Li+-templated complexation of cylindrical macrotricyclic host with naphthalene diimide: Cation-controlled switchable complexation processes

  • Articles
  • Special Topic Physical Organic Chemistry in China
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Anthracene-based cylindrical macrotricyclic polyether (1) containing two dibenzo-30-crown-10 cavities has been proved to be an efficient host for the templated complexation with N,N′-dipropyl-1,4,5,8-naphthalenetetracarboxylic diimide in the presence of lithium ions in both solution and solid state. Host 1 could also form 1:1 complex with the bispyridinium salt with two β-hydroxyethyl groups in solution and in the solid state. Moreover, it was also found that the switchable complexation processes between the macrotricyclic host and two different kinds of guests could be chemically controlled by the addition and removal of lithium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feringa BL. Molecular Switches. Germany Weinheim: Wiley-VCH Verlag GmbH, 2001

    Book  Google Scholar 

  2. Balzani V, Credi A, Venturi M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld. Germany Weinheim: Wiley-VCH Verlag GmbH, 2008

    Google Scholar 

  3. Saha S, Stoddart JF. Photo-driven molecular devices. Chem Soc Rev, 2007, 36: 77–92

    Article  CAS  Google Scholar 

  4. Kinbara K, Aida T. Toward intelligent molecular machines: Directed motions of biological and artificial molecules and assemblies. Chem Rev, 2005, 105: 1377–1400

    Article  CAS  Google Scholar 

  5. Tian H, Wang QC. Recent progress on switchable rotaxanes. Chem Soc Rev, 2006, 35: 361–374

    Article  CAS  Google Scholar 

  6. Kay ER, Leigh DA, Zerbetto F. Synthetic molecular motors and mechanical machines. Angew Chem Int Ed, 2007, 46: 72–191

    Article  CAS  Google Scholar 

  7. Green JE, Wook Choi J, Boukai A, Bunimovich Y, Johnston-Halperin E, Deionno E, Luo Y, Sheriff BA, Xu K, Shik Shin Y, Tseng H-R, Green JE, Wook Choi J, Boukai A, Bunimovich Y, Johnston-Halperin E, Deionno E, Luo Y, Sheriff BA, Xu K, Shik Shin Y, Tseng H-R, Stoddart JF, Heath JR. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter. Nature, 2007, 445: 414–417

    Article  CAS  Google Scholar 

  8. Nakanishi H, Walker DA, Bishop KJM, Wesson PJ, Yan Y, Soh S, Swaminathan S, Grzybowski BA. Dynamic internal gradients control and direct electric currents within nanostructured materials. Nat Nanotech, 2011, 6: 740–746

    Article  CAS  Google Scholar 

  9. Banerjee IA, Yu L, Matsui H. Application of host-guest chemistry in nanotube-based device fabrication: Photochemically controlled immobilization of azobenzene nanotubes on patterned α-CD monolayer/Au substrates via molecular recognition. J Am Chem Soc, 2003, 125: 9542–9543

    Article  CAS  Google Scholar 

  10. Shinkai S. Switch-functionalized systems in biomimetic chemistry. Pure Appl Chem, 1987, 59: 425–430

    Article  CAS  Google Scholar 

  11. Shinkai S. Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion. J Am Chem Soc, 1981, 103: 111–115

    Article  CAS  Google Scholar 

  12. Dohno C, Nakatani K. Control of DNA hybridization by photoswitchable molecular glue. Chem Soc Rev, 2011, 40: 5718–5729

    Article  CAS  Google Scholar 

  13. Merino E. Synthesis of azobenzenes: The coloured pieces of molecular materials. Chem Soc Rev, 2011, 40: 3835–3853

    Article  CAS  Google Scholar 

  14. Mohideen IH, Xiao B, Wheatley PS, McKinlay AC, Li Y, Slawin AMZ, Aldous DW, Cessford NF, Düren T, Zhao XB, Gill R, Thomas KM, Griffin JM, Ashbrook SE, Morris RE. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilichydrophobic metal-organic framework. Nat Chem, 2011, 3: 304–310

    Article  CAS  Google Scholar 

  15. Wang JB, Feringa BL. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science, 2011, 331: 1429–1432

    Article  CAS  Google Scholar 

  16. Serreli V, Lee CF, Kay ER, Leigh DA. A molecular information ratchet. Nature, 2007, 445: 523–527

    Article  CAS  Google Scholar 

  17. Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR. A [2]catenane based solid-state electronically reconfigurable switch. Science, 2000, 289: 1172–1175

    Article  CAS  Google Scholar 

  18. Zhao YL, Dichtel WR, Trabolsi A, Saha S, Aprahamian I, Stoddart JF. A redox-switchable α-cyclodextrin-based [2]rotaxane. J Am Chem Soc, 2008, 130: 11294–11296

    Article  CAS  Google Scholar 

  19. Zhao YL, Aprahamian I, Trabolsi A, Erina N, Stoddart JF. Organogel formation by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor. J Am Chem Soc, 2008, 130: 6348–6350

    Article  CAS  Google Scholar 

  20. Steuerman DW, Tseng H-R, Peters AJ, Flood AH, Jeppesen JO, Nielsen KA, Stoddart JF, Heath JR. Molecular-mechanical switchbased solid-state electrochromic devices. Angew Chem Int Ed, 2004, 43: 6486–6491

    Article  CAS  Google Scholar 

  21. Sindelar V, Silvi S, Kaifer AE. Switching a molecular shuttle on and off: simple, pH-controlled pseudorotaxanes based on cucurbit[7]uril. Chem Commun, 2006, 20: 2185–2187

    Article  Google Scholar 

  22. Ooya T, Inoue D, Choi HS, Kobayashi Y, Loethen S, Thompson DH, Ko YH, Kim K, Yui N. PH-responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl β-cyclodextrin and cucurbit[7]uril. Org Lett, 2006, 8: 3159–3162

    Article  CAS  Google Scholar 

  23. Sobransingh D, Kaifer AE. Electrochemically switchable cucurbit [7]uril-based pseudorotaxanes. Org Lett, 2006, 8: 3247–3250

    Article  CAS  Google Scholar 

  24. Tuncel D, Xzsar X, Tiftik HB, Salih B. Molecular switch based on a cucurbit[6]uril containing bistable [3]rotaxane. Chem Commun, 2007, 13: 1369–1371

    Article  Google Scholar 

  25. Chakrabarti S, Mukhopadhyay P, Lin S, Isaacs L. Reconfigurable four-component molecular switch based on pH-controlled guest swapping. Org Lett, 2007, 9: 2349–2352

    Article  CAS  Google Scholar 

  26. Liu Y, Li XY, Zhang HY, Li CJ, Ding F. Cyclodextrin-driven movement of cucurbit[7]uril. J Org Chem, 2007, 72: 3640–3645

    Article  CAS  Google Scholar 

  27. An H, Bradshaw J S, Izatt R M. Macropolycyclic polyethers (cages) and related compounds. Chem Rev, 1992, 92: 543–572

    Article  CAS  Google Scholar 

  28. Fages F, Desvergne J P, Kampke K, Bouas-Laurent H, Lehn JM, Meyer M, Albrecht-Gary AM. Linear molecular recognition: Spectroscopic, photophysical, and complexation studies on alpha, omegaalkanediyldiammonium ions binding to a bisanthracenyl macrotricyclic receptor. J Am Chem Soc, 1993, 115: 3658–3664

    Article  CAS  Google Scholar 

  29. Huang F, Zakharov LN, Rheingold AL, Ashraf-Khorassani M, Gibson HW. Synthesis of a symmetric cylindrical Bis(crown ether) host and its complexation with paraquat. J Org Chem, 2005, 70: 809–813

    Article  CAS  Google Scholar 

  30. Huang F, Gibson H W. A supramolecular poly[3]pseudorotaxane by self-assembly of a homoditopic cylindrical bis(crown ether) host and a bisparaquat derivative. Chem Commun, 2005, (13): 1696–1698

  31. Zong QS, Chen CF. Novel triptycene-based cylindrical macrotricyclic host: Synthesis and complexation with paraquat derivatives. Org Lett, 2006, 8: 211–214

    Article  CAS  Google Scholar 

  32. Zhao JM, Zong QS, Han T, Xiang JF, Chen CF. Guest-dependent complexation of triptycene-based macrotricyclic host with paraquat derivatives and secondary ammonium salts: A chemically controlled complexation process. J Org Chem, 2008, 73: 6800–6806

    Article  CAS  Google Scholar 

  33. Han T, Chen CF. Formation of ternary complexes between a macrotricyclic host and hetero-guest pairs: An acid-base controlled selective complexation process. Org Lett, 2007, 9: 4207–4210

    Article  CAS  Google Scholar 

  34. Han T, Chen CF. Efficient potassium-ion-templated synthesis and controlled destruction of [2]rotaxanes based on cascade complexes. J Org Chem, 2008, 73: 7735–7742

    Article  CAS  Google Scholar 

  35. Han T, Chen CF. Selective templated complexation of a cylindrical macrotricyclic host with neutral guests: Three cation-controlled switchable processes. J Org Chem, 2007, 72: 7287–7293

    Article  CAS  Google Scholar 

  36. Zong QS, Zhang C, Chen CF. Self-assembly of triptycene-based cylindrical macrotricyclic host with dibenzylammonium ions: Construction of dendritic [3]pseudorotaxanes. Org Lett, 2006, 8: 1859–1862

    Article  CAS  Google Scholar 

  37. Su YS, Chen CF. Novel anthracene-based cylindrical macrotricyclic polyether: Powerful host for bispyridinium dications. Org Lett, 2010, 12: 1888–1891

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuanFeng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, F., Su, Y. & Chen, C. Li+-templated complexation of cylindrical macrotricyclic host with naphthalene diimide: Cation-controlled switchable complexation processes. Sci. China Chem. 55, 2069–2074 (2012). https://doi.org/10.1007/s11426-012-4671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4671-1

Keywords

Navigation