Skip to main content
Log in

TiO2-functionalized mesoporous materials for sensitive analysis of multi-phosphopeptides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Protein phosphorylation as one of the most important post-translational modifications in mammalian cells regulates numerous biological processes. Here we propose a novel strategy for the selective isolation and sensitive analysis of multi-phosphopeptides based on TiO2-gratfed mesoporous materials, in which MCM-41 and SBA-15 were chosen as the hard templates. The commercialized IMAC and TiO2 nanopartices were further investigated in the phosphopeptide analysis for comparison. The enrichment efficiency was evaluated and measured by MALDI-TOF mass spectrometry. The results indicated that both TiO2-SBA-15 and TiO2-MCM-41 exhibited the preferential affinity to multi-phosphopeptides compared with the other two widely used strategies. The mesoporous TiO2 based protocol showed highly selective and sensitive properties, where phosphopeptides could be identified at femtomole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunter T. Signaling—2000 and beyond. Cell, 2000, 100: 113–127

    Article  CAS  Google Scholar 

  2. McLachlin DT, Chait BT. Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal Chem, 2003, 75: 6826–6836

    Article  CAS  Google Scholar 

  3. Jensen ON. Interpreting the protein language using proteomics. Nat Rev Mol Cell Bio, 2006, 7: 391–403

    Article  CAS  Google Scholar 

  4. Linding R, Jensen LJ, Ostheimer GJ, van Vugt M, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T. Systematic discovery of in vivo phosphorylation networks. Cell, 2007, 129: 1415–1426

    Article  CAS  Google Scholar 

  5. Reinders J, Sickmann A. State-of-the-art in phosphoproteomics. Proteomics, 2005, 5: 4052–4061

    Article  CAS  Google Scholar 

  6. Salomon AR, Ficarro SB, Brill LM, Brinker A, Phung QT, Ericson C, Sauer K, Brock A, Horn DM, Schultz PG, Peters EC. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc Natl Acad Sci USA, 2003, 100: 443–448

    Article  CAS  Google Scholar 

  7. Raska CS, Parker CE, Dominski Z, Marzluff WF, Glish GL, Pope RM, Borchers CH. Direct MALDI-MS/MS of phosphopeptides affinity-bound to immobilized metal ion affinity chromatography beads. Anal Chem, 2002, 74: 3429–3433

    Article  CAS  Google Scholar 

  8. Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem, 1999, 71: 2883–2892

    Article  CAS  Google Scholar 

  9. Chen CT, Chen WY, Tsai PJ, Chien KY, Yu JS, Chen YC. Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J Proteome Res, 2007, 6: 316–325

    Article  CAS  Google Scholar 

  10. Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF. Analysis of receptor signaling pathways by mass spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci USA, 2000, 97: 179–184

    Article  CAS  Google Scholar 

  11. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJD. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics, 2005, 4: 873–886

    Article  CAS  Google Scholar 

  12. Thingholm TE, Jorgensen TJD, Jensen ON, Larsen MR. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nature Protoc, 2006, 1: 1929–1935

    Article  CAS  Google Scholar 

  13. Zhou HL, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol, 2001, 19: 375–378

    Article  CAS  Google Scholar 

  14. Kweon HK, Hakansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem, 2006, 78: 1743–1749

    Article  CAS  Google Scholar 

  15. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Med, 2007, 4: 231–237

    Article  CAS  Google Scholar 

  16. Bi HY, Qiao L, Busnel JM, Devaud V, Liu BH, Girault HH. TiO2 printed aluminum foil: Single-use film for a laser desorption/ionization target plate. Anal Chem, 2009, 81: 1177–1183

    Article  CAS  Google Scholar 

  17. Qiao LA, Bi HY, Busnel JM, Hojeij M, Mendez M, Liu BH, Girault HH. Controlling the specific enrichment of multi-phosphorylated peptides on oxide materials: Aluminium foil as a target plate for laser desorption ionization mass spectrometry. Chem Sci, 2010, 1: 374–382

    Article  CAS  Google Scholar 

  18. Wan JJ, Qian K, Qiao L, Wang YH, Kong JL, Yang PY, Liu BH, Yu CZ. TiO2-modified macroporous silica foams for advanced enrichment of multi-phosphorylated peptides. Chem Eur J, 2009, 15: 2504–2508

    Article  CAS  Google Scholar 

  19. Zhou HJ, Ye ML, Dong J, Han GH, Jiang XN, Wu RN, Zou HF. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res, 2008, 7: 3957–3967

    Article  CAS  Google Scholar 

  20. Qian K, Wan JJ, Liu F, Girault HH, Liu BH, Yu CZ. A phospho-directed macroporous alumina-silica nanoreactor with multifunctions. Acs Nano, 2009, 3: 3656–3662

    Article  CAS  Google Scholar 

  21. Qian K, Wan JJ, Qiao L, Huang XD, Tang JW, Wang YH, Kong JL, Yang PY, Yu CZ, Liu BH. Macroporous materials as novel catalysts for efficient and controllable proteolysis. Anal Chem, 2009, 81: 5749–5756

    Article  CAS  Google Scholar 

  22. Zhang YH, Liu Y, Kong JL, Yang PY, Tang Y, Liu BH. Efficient proteolysis system: A nanozeolite-derived microreactor. Small, 2006, 2: 1170–1173

    Article  CAS  Google Scholar 

  23. Qian K, Wan JJ, Huang XD, Yang PY, Liu BH, Yu CZ. A smart glycol-directed nanodevice from rationally designed macroporous materials. Chem Eur J, 2010, 16: 822–828

    CAS  Google Scholar 

  24. Bi HY, Qiao L, Busnel JM, Liu BH, Girault HH. Kinetics of proteolytic reactions in nanoporous materials. J Proteome Res, 2009, 8: 4685–4692

    Article  CAS  Google Scholar 

  25. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710–712

    Article  CAS  Google Scholar 

  26. Han YJ, Kim JM, Stucky GD. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem Mat, 2000, 12: 2068–2069

    Article  CAS  Google Scholar 

  27. Kruk M, Jaroniec M, Ko CH, Ryoo R. Characterization of the porous structure of SBA-15. Chem Mat, 2000, 12: 1961–1968

    Article  CAS  Google Scholar 

  28. Zhao DY, Sun JY, Li QZ, Stucky GD. Morphological control of highly ordered mesoporous silica SBA-15. Chem Mat, 2000, 12: 275–

    Article  CAS  Google Scholar 

  29. Gao XT, Bare SR, Fierro JLG, Banares MA, Wachs IE. Preparation and in-situ spectroscopic characterization of molecularly dispersed titanium oxide on silica. J Phys Chem B, 1998, 102: 5653–5666

    Article  CAS  Google Scholar 

  30. Luan ZH, Maes EM, van der Heide PAW, Zhao DY, Czernuszewicz RS, Kevan L. Incorporation of titanium into mesoporous silica molecular sieve SBA-15. Chem Mat, 1999, 11: 3680–3686

    Article  CAS  Google Scholar 

  31. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol, 2002, 20: 301–305

    Article  CAS  Google Scholar 

  32. Qiao L, Roussel C, Wan JJ, Yang PY, Girault HH, Liu BH. Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis. J Proteome Res, 2007, 6: 4763–4769

    Article  CAS  Google Scholar 

  33. Connor PA, McQuillan AJ. Phosphate adsorption onto TiO2 from aqueous solutions: An in situ internal reflection infrared spectroscopic study. Langmuir, 1999, 15: 2916–2921

    Article  CAS  Google Scholar 

  34. Dobson KD, McQuillan AJ. In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions. Spectroc Acta Pt A-Molec Biomolec Spectr, 2000, 56: 557–565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoHong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Wan, J., Qian, K. et al. TiO2-functionalized mesoporous materials for sensitive analysis of multi-phosphopeptides. Sci. China Chem. 54, 1327–1333 (2011). https://doi.org/10.1007/s11426-011-4344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4344-5

Keywords

Navigation