Skip to main content
Log in

Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: Synthesis, characterization, and catalysis applications

  • Articles
  • Special Issue
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report that noble metal nanopartcles (Pd, Pt, Au, and Ag) decorated-graphene nanosheets can be synthesized with the template of graphene oxide by a one-pot solution-based method. The resulting hybrid materials are characterized by transmission electronic microscopy, energy dispersive X-ray spectroscopy, scanning electronic microscopy, atomic force microscopy, X-ray diffraction, and Raman spectroscopy, which demonstrate that the metal nanoparticles have been uniformly deposited on the surfaces of graphene nanosheets. Our results in turn verify that the carboxylic groups of graphene oxide are statistically distributed on its whole sheet surface rather than just at its edges. The graphene-metal nanohybrids can be used as catalysts in the reduction of potassium hexacyanoferrate(III) with NaBH4 in aqueous solution. Our results suggest that graphene is a superior substrate to support metals for applications in the heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  CAS  Google Scholar 

  2. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnol, 2009, 4: 217–224

    Article  CAS  Google Scholar 

  3. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: The new two-dimensional nanomaterial. Angew Chem Int Ed, 2009, 48: 7752–7777

    Article  CAS  Google Scholar 

  4. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39: 228–240

    Article  CAS  Google Scholar 

  5. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene. Chem Rev, 2010, 110: 132–145

    Article  CAS  Google Scholar 

  6. Katsnelson MI. Graphene: Carbon in two dimensions. Mater Today, 2007, 10: 20–27

    Article  CAS  Google Scholar 

  7. Cravotto G, Cintas P. Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem Eur J, 2010, 16: 5246–5259

    CAS  Google Scholar 

  8. Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, 48: 2127–2150

    Article  CAS  Google Scholar 

  9. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498–3502

    Article  CAS  Google Scholar 

  10. Lu GH, Mao S, Park S, Ruoff RS, Chen JH. Facile, Noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res, 2009, 2: 192–200

    Article  CAS  Google Scholar 

  11. Liu JB, Fu SH, Yuan B, Li YL, Deng ZX. Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc, 2010, 132: 7279–7281

    Article  CAS  Google Scholar 

  12. Burda C, Chen XB, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105: 1025–1102

    Article  CAS  Google Scholar 

  13. Astruc D, Lu F, Aranzaes JR. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed, 2005, 44: 7852–7872

    Article  CAS  Google Scholar 

  14. Stakheev AY, Kustov LM. Effects of the support on the morphology and electronic properties of supported metal clusters: Modern concepts and progress in 1990s. Appl Catal A, 1999, 188: 3–35

    Article  CAS  Google Scholar 

  15. Felpin FX, Ayad T, Mitra S. Pd/C: An old catalyst for new applications — Its use for the Suzuki-Miyaura reaction. Eur J Org Chem, 2006: 2679-2690

  16. Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A, 2003, 253: 337–358

    Article  CAS  Google Scholar 

  17. Liang CH, Xia W, van den Berg M, Wang YM, Soltani-Ahmadi H, Schluter O, Fischer, RA, Muhler M. Synthesis and catalytic performance of Pd nanoparticle/functionalized CNF composites by a two-step chemical vapor deposition of Pd(allyl)(Cp) precursor. Chem Mater, 2009, 21: 2360–2366

    Article  CAS  Google Scholar 

  18. Karousis N, Tsotsou GE, Evangelista F, Rudolf P, Ragoussis N, Tagmatarchis N. Carbon nanotubes decorated with palladium nanopar ticles: Synthesis, characterization, and catalytic activity. J Phys Chem C, 2008, 112: 13463–13469

    Article  CAS  Google Scholar 

  19. Gao C, He H, Zhou L, Zheng X, Zhang Y. Scalable functional group engineering of carbon nanotubes by improved one-step nitrene chemistry. Chem Mater, 2009, 21: 360–370

    Article  CAS  Google Scholar 

  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  21. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J Am Chem Soc, 2009, 131: 8262–8270

    Article  CAS  Google Scholar 

  22. Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res, 2010, 3: 429–437

    Article  CAS  Google Scholar 

  23. Si YC, Samulski ET. Exfoliated graphene separated by platinum nanoparticles. Chem Mater, 2008, 20: 6792–6797

    Article  CAS  Google Scholar 

  24. Xu C, Wang X, Zhu JW. Graphene-metal particle nanocomposites. J Phys Chem C, 2008, 112: 19841–19845

    Article  CAS  Google Scholar 

  25. Li YJ, Gao W, Ci LJ, Wang CM, Ajayan PM. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 2010, 48: 1124–1130

    Article  CAS  Google Scholar 

  26. Dong LF, Gari RRS, Li Z, Craig MM, Hou SF. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon, 2010, 48: 781–787

    Article  CAS  Google Scholar 

  27. Guo SJ, Dong SJ, Wang EW. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano, 2010, 4: 547–555

    Article  CAS  Google Scholar 

  28. Kong BS, Geng JX, Jung HT. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem Commun, 2009: 2174-2176

  29. Hong WJ, Bai H, Xu YX, Yao ZY, Gu ZZ, Shi GQ. Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C, 2010, 114: 1822–1826

    Article  CAS  Google Scholar 

  30. Goncalves G, Marques P, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater, 2009, 21: 4796–4802

    Article  CAS  Google Scholar 

  31. Shen JF, Shi M, Li N, Yan B, Ma HW, Hu YZ, Ye MX. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res, 2010, 3: 339–349

    Article  CAS  Google Scholar 

  32. Xu C, Wang X. Fabrication of flexible metal-nanoparticte film using graphene oxide sheets as substrates. Small, 2009, 5: 2212–2217

    Article  CAS  Google Scholar 

  33. Zhou XZ, Huang X, Qi XY, Wu SX, Xue C, Boey FYC, Yan QY, Chen P, Zhang H. In situ synthesis of metal nanoparticles on singlelayer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C, 2009, 113: 10842–10846

    Article  CAS  Google Scholar 

  34. Pasricha R, Gupta S, Srivastava AK. A facile and novel synthesis of Ag-graphene-based nanocomposites. Small, 2009, 5: 2253–2259

    Article  CAS  Google Scholar 

  35. Muszynski R, Seger B, Kamat PV. Decorating graphene sheets with gold nanoparticles. J Phys Chem C, 2008, 112: 5263–5266

    Article  CAS  Google Scholar 

  36. Yuge R, Zhang MF, Tomonari M, Yoshitake T, Iijima S, Yudasaka M. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano, 2008, 2: 1865–1870

    Article  CAS  Google Scholar 

  37. He HK, Gao C. General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater, 2010, 22: 5054–4064

    Article  CAS  Google Scholar 

  38. He HK, Gao C. Supraparamagnetic, conductive and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl Mater Interf, 2010, 2: 3201–3210

    Article  CAS  Google Scholar 

  39. Kou L, Gao C. Making silica nanoparticles-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale, in press, c0nr00609b

  40. Xu Z, Gao C. In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules, 2010, 43: 6716–6723

    Article  CAS  Google Scholar 

  41. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80: 1339–1339

    Article  CAS  Google Scholar 

  42. Carregal-Romero S, Buurma NJ, Perez-Juste J, Liz-Marzan LM, Herves P. Catalysis by Au@PNIPAM nanocomposites: Effect of the cross-linking density. Chem Mater, 2010, 22: 3051–3059

    Article  CAS  Google Scholar 

  43. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol, 2008, 3: 101–105

    Article  CAS  Google Scholar 

  44. Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2: 1487–1491

    Article  CAS  Google Scholar 

  45. Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C, 2008, 112: 8192–8195

    Article  CAS  Google Scholar 

  46. Shen JF, Hu YZ, Shi M, Li N, Ma HW, Ye MX. One step synthesis of graphene oxide-magnetic nanoparticle composite. J Phys Chem C, 2010, 114: 1498–1503

    Article  CAS  Google Scholar 

  47. Li FH, Song JF, Yang HF, Gan SY, Zhang QX, Han DX, Ivaska A, Niu L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology, 2009, 20: 455602

    Article  Google Scholar 

  48. Carregal-Romero S, Perez-Juste J, Herves P, Liz-Marzan LM, Mulvaney P. Colloidal gold-catalyzed reduction of ferrocyanate (III) by borohydride ions: A model system for redox catalysis. Langmuir, 2010, 26: 1271–1277

    Article  CAS  Google Scholar 

  49. Pastoriza-Santos I, Perez-Juste J, Carregal-Romero S, Herves P, Liz-Marzan LM. Metallodielectric hollow shells: Optical and catalytic properties. Chem Asian J, 2006, 1: 730–736

    Article  CAS  Google Scholar 

  50. Sanles-Sobrido M, Correa-Duarte MA, Carregal-Romero S, Rodriguez-Gonzalez B, Alvarez-Puebla RA, Herves P, Liz-Marzan LM. Highly catalytic single-crystal dendritic Pt nanostructures supported on carbon nanotubes. Chem Mater, 2009, 21: 1531–1535

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Gao, C. Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: Synthesis, characterization, and catalysis applications. Sci. China Chem. 54, 397–404 (2011). https://doi.org/10.1007/s11426-010-4191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4191-9

Keywords

Navigation