Skip to main content
Log in

Carboxymethyl glycoside lactone (CMGL) synthons: Scope of the method and preliminary results on step growth polymerization of α-azide-ω-alkyne glycomonomers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Carboxymethyl glycoside lactones (CMGLs) are bicyclic synthons which open readily for accessing new types of pseudo-glycoconjugates, such as sugar-amino acid hybrids, neoglycolipids, pseudodisaccharides, and membrane imaging systems. After lactone opening, free OH-2 is available for further functionalization, leading to 1,2-bisfunctionalized derivatives. This strategy is illustrated herein with new polymerizable systems of the AB type bearing both azide and alkyne functions prepared from α or β gluco-CMGL synthons. After the reaction of lactones with propargylamine, an azido group was introduced by two different sequences leading to either the 2-manno-azido or the 6-gluco-azido products. The capability of these AB monomers to undergo step growth polymerization through copper(I) catalyzed alkyne-azide cycloaddition (CuAAC) and generate glycopolytriazoles was evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trombotto S, Bouchu A, Descotes G, Queneau Y. Hydrogen peroxide oxidation of palatinose and trehalulose: Direct preparation of carboxymethyl α-d-glucopyranoside. Tetrahedron Lett, 2000, 41: 8273–8277

    Article  CAS  Google Scholar 

  2. Pierre R, Chambert S, Alirachedi F, Danel M, Trombotto S, Doutheau A, Queneau Y. Carboxymethyl glucosides and carboxymethyl glucoside lactones: A detailed study of their preparation by oxidative degradation of disaccharides. C R Chimie, 2008, 11: 61–66

    CAS  Google Scholar 

  3. Listkowski A, Ing P, Cheaib R, Chambert S, Doutheau A, Queneau, Y. Carboxymethylglycoside lactones (CMGLs): Structural variations on the carbohydrate moiety. Tetrahedron: Asymmetry, 2007, 18: 2201–2210

    Article  CAS  Google Scholar 

  4. Cheaib R, Listkowski A, Chambert S, Doutheau A, Queneau Y. Synthesis of new mono- and disaccharidic carboxymethyl-glycoside lactones (CMGLs) and their use toward 1,2-bis-functionalized carbohydrate synthons. Tetrahedron: Asymmetry, 2008, 19: 1919–1933

    Article  CAS  Google Scholar 

  5. Queneau Y, Chambert S, Moebs S, Listkowski A, Cheaib R. Glycosidic bicyclic lactones as new carbohydrate scaffolds. Carbohydr Chem, 2009, 35: 99–126

    CAS  Google Scholar 

  6. Queneau Y, Jarosz S, Lewandowski B, Fitremann J. Sucrose chemistry and applications of sucrochemicals. Adv Carbohyd Chem Biochem, 2008, 61: 217–292

    Article  Google Scholar 

  7. Queneau Y, Fitremann J, Trombotto S. The chemistry of unprotected sucrose: The selectivity issue. C R Chimie, 2004, 7: 177–188

    CAS  Google Scholar 

  8. Dean B, Oguchi H,; Cai S, Otsuji E, Tashiro K, Hakomori S, Toyokuni T. Synthesis of multivalent β-lactosyl clusters as potential tumor metastasis inhibitors. Carbohydr Res, 1993, 245: 175–192

    Article  CAS  Google Scholar 

  9. Venturello C, Ricci M. Oxidative cleavage of 1,2-diols to carboxylic acids by hydrogen peroxide. J Org Chem, 1986, 51: 1599–1602

    Article  CAS  Google Scholar 

  10. Trombotto S, Danel M, Fitremann J, Bouchu A, Queneau Y. Straightforward route for anchoring a glucosyl moiety onto nucleophilic species: Reaction of amines and alcohols with carboxymethyl 3,4,6-tri-O-acetyl-α-d-glucopyranoside 2-O-lactone. J Org Chem, 2003, 68: 6672–6678

    Article  CAS  Google Scholar 

  11. Le Chevalier A, Pierre R, Kanso R, Chambert S, Doutheau A, Queneau Y. Preparation of new amide-linked pseudodisaccharides by the carboxymethylglycoside lactone (CMGL) strategy. Tetrahedron Lett, 2006, 47: 2431–2434

    Article  Google Scholar 

  12. Chambert S, Doutheau A, Queneau Y, Cowling SJ, Goodby JW, Mackenzie G. Synthesis and thermotropic behavior of simple new glucolipid amides. J Carbohydr Chem, 2007, 26: 27–39

    Article  CAS  Google Scholar 

  13. Sol V, Charmot A, Krausz P, Trombotto S, Queneau Y. Synthesis of new glucosylated porphyrins bearing an α-d-linkage. J Carbohydr Chem, 2006, 25: 345–360

    Article  CAS  Google Scholar 

  14. Menard F, Sol V, Ringot C, Granet R, Alves S, Le Morvan C, Queneau Y, Ono N, Krausz P. Synthesis of tetraglucosyl- and tetrapolyamine-tetrabenzoporphyrin conjugates for an application in PDT. Bioorg Med Chem, 2009, 17: 7647–7657

    Article  CAS  Google Scholar 

  15. Barsu C, Cheaib R, Chambert S, Queneau Y, Maury O, Cottet D, Wege H, Douady J, Bretonniere Y, Andraud C. Neutral push-pull chromophores for nonlinear optical imaging of cell membranes. Org Biomol Chem, 2010, 8: 142–150

    Article  CAS  Google Scholar 

  16. Ali Rachedi F, Chambert S, Ferkous F, Queneau Y, Cowling SJ, Goodby JW. The unusual self-organizing behavior of a glycosteroidal bolaphile. Chem Commun, 2009, 6355–6357

  17. Bernard J, Favier A, Zhang L, Nilasaroya A, Davis TP, Barner-Kowollik C, Stenzel MH. Poly(vinyl ester) star polymers via xanthate mediated living radical polymerization: From poly(vinyl alcohol to glycopolymer stars. Macromolecules, 2005, 38: 5475–5484

    Article  CAS  Google Scholar 

  18. Bernard J, Hao X, Davis TP, Barner-Kowollik C, Stenzel MH. Synthesis of various glycopolymer architectures: From block copolymers to stars. Biomacromolecules, 2006, 7: 232–238

    Article  CAS  Google Scholar 

  19. Tornoe W, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem, 2002, 67: 3057–3064

    Article  CAS  Google Scholar 

  20. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed, 2002, 41: 2596–2599

    Article  CAS  Google Scholar 

  21. Kolb H C, Finn M G, Sharpless K B. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed, 2001, 40: 2004–2021

    Article  CAS  Google Scholar 

  22. Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev, 2009, 109, 5620–5686

    Article  CAS  Google Scholar 

  23. Lutz JF. 1,3-Dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science. Angew Chem Int Ed, 2007, 46, 2–10

    Article  Google Scholar 

  24. Meldal M, Tornoe CW. Cu-catalyzed azide-alkyne cycloaddition. Chem Rev, 2008, 108, 2952–3015

    Article  CAS  Google Scholar 

  25. Carlmark A, Hawker CJ, Hult A, Malkoch M. New methodologies in the construction of dendritic materials. Chem Soc Rev, 2009, 38, 352–362

    Article  CAS  Google Scholar 

  26. Nebhani L, Barner-Kowollik C. Orthogonal transformations on solid substrates: Efficient avenues to surface modification. Adv Mater, 2009, 21, 3442–3468

    Article  CAS  Google Scholar 

  27. Diaz DD, Punna S, Holzer P, McPherson A K, Sharpless KB, Fokin VV, Finn MG. Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. J Polym Sci Part A Polym Chem, 2004, 42, 4392–4403

    Article  CAS  Google Scholar 

  28. Binauld S, Boisson F, Hamaide T, Pascault JP, Drockenmuller E, Fleury E. Kinetic study of copper(I)-catalyzed click chemistry stepgrowth polymerization. J Polym Sci Part A Polym Chem, 2008, 46, 5506–5517

    Article  CAS  Google Scholar 

  29. Tsarevsky NV, Sumerlin BS, Matyjaszewski K. Step-growth “click” coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules, 2005, 38, 3558–3561

    Article  CAS  Google Scholar 

  30. van Dijk M, Nollet ML, Weijers P, Dechesne AC, Nostrum CF, Hennink WE, Rijkers DTS, Liskamp RMJ. Synthesis and characterization of biodegradable peptide-based polymers prepared by microwave-assisted click chemistry. Biomacromolecules, 2008, 9, 2834–2843

    Article  Google Scholar 

  31. Binauld S, Damiron D, Hamaide T, Pascault JP, Fleury E, Drockenmuller E. Click chemistry step growth polymerization of novel α-azide-ω-alkyne monomers. Chem Commun, 2008, 4138–4140

  32. Xue X, Zhu J, Zhang W, Zhang Z, Zhu X. Preparation and characterization of novel main-chain azobenzene polymers via step-growth polymerization based on click chemistry. Polymer, 2009, 50, 4512–4519

    Article  CAS  Google Scholar 

  33. Binauld S, Hawker CJ, Fleury E, Drockenmuller E. A modular approach to functionalized and expanded crown ether based macrocycles using click chemistry. Angew Chem Int Ed, 2009, 48,36, 6654–665

    Article  CAS  Google Scholar 

  34. Binauld S, Fleury E, Drockenmuller E. Solving the loss of orthogonality during the CuAAC polyaddition of α-azide-ω-alkyne monomers catalyzed by CuPPh3Br: Application to the synthesis of high molar mass polytriazoles. J Polym Sci Part A Polym Chem, 2010, 48, 2470–2476

    Article  CAS  Google Scholar 

  35. Dedola S, Nepogodiev SA, Field RA. Recent applications of the CuI-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. Biomol Chem, 2007, 5: 1006–1017

    Article  CAS  Google Scholar 

  36. Srinivasachari S, Liu Y, Zhang G, Prevette L, Reineke TM. Trehalose click polymers inhibit nanoparticle aggregation and promote pDNA delivery in serum. J Am Chem Soc, 2006, 128: 8176–8184

    Article  CAS  Google Scholar 

  37. Bodine KD, Gin DY, Gin MS. Highly convergent synthesis of C3- or C2-symmetric carbohydrate macrocycles. Org Lett, 2005, 20: 4479–4482

    Article  Google Scholar 

  38. Bodine KD, Gin DY, Gin MS. Synthesis of readily modifiable cyclodextrin analogues via cyclodimerization of an alkynylazido trisaccharide. J Am Chem Soc, 2004, 126: 1638–1639

    Article  CAS  Google Scholar 

  39. Besset C, Binauld S, Ibert M, Fuertes P, Pascault JP, Fleury E, Bernard J, Drockenmuller E. Copper-catalyzed vs. thermal step growth polymerization of starch-derived α-azide-ω-alkyne dianhydrohexitol stereoisomers: To click or not to click? Macromolecules, 2010, 43: 17–19

    Article  CAS  Google Scholar 

  40. Besset C, Bernard J, Fleury E, Pascault JP, Cassagnau P, Drockenmuller E, Williams RJJ. Bio-sourced networks from thermal polyaddition of a starch-derived α-azide-ω-alkyne AB monomer with an A2B2 aliphatic cross-linker. Macromolecules, 2010, 43: 5672–5678

    Article  CAS  Google Scholar 

  41. Besset C, Chambert S, Fenet B, Queneau Y. Direct azidation of unprotected carbohydrates under Mitsunobu conditions using hydrazoic acid. Tetrahedron Lett, 2009, 50: 7043–7047

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Queneau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Miao, Y., Chambert, S. et al. Carboxymethyl glycoside lactone (CMGL) synthons: Scope of the method and preliminary results on step growth polymerization of α-azide-ω-alkyne glycomonomers. Sci. China Chem. 53, 1880–1887 (2010). https://doi.org/10.1007/s11426-010-4058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4058-0

Keywords

Navigation