Skip to main content
Log in

New-generation biomedical materials: Peptide dendrimers and their application in biomedicine

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Peptide dendrimers are attractive synthetic polymers and have been widely used as a new generation of biomaterials in recent years. Peptide dendrimers, as well as general dendrimers, may be synthesized to reach nano sizes, and display well-defined architectures, highly-branched structures, high density of functional terminal groups, and controllable molecular weights. On the other hand, peptide dendrimers have properties similar to proteins and some special characteristics, such as good biocompatibility, water solubility and resistance to proteolytic digestion. Due to these advantages, peptide dendrimers have received considerable attention in biomedicine. This review focuses on the development of peptide dendrimers with emphasis on their applications both in diagnostics and in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosman AW, Janssen HM, Meijer EW. About dendrimers: Structure, physical properties, and applications. Chem Rev, 1999, 99: 1665–1688

    CAS  Google Scholar 

  2. Flory PJ. Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-Bf-1 type units. J Am Chem Soc, 1952, 74: 2718–2723

    CAS  Google Scholar 

  3. Buhleier E, Wehner W, Vögtle F. Cascade and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis, 1978, 155–158

  4. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: Starburst-dendritic macromolecules. Polym J, 1985, 17: 117–132

    CAS  Google Scholar 

  5. Newkome GR, Yao ZQ, Baker GR, Gupta VK. Micelles part 1, cascade molecules: A new approach to micelles. A [27]-arborol. J Org Chem, 1985, 50: 2003–2004

    CAS  Google Scholar 

  6. Crespo L, Sanclimens G, Pons M, Giralt E, Royo M. Peptide and amide bond-containing dendrimers. Chem Rev, 2005, 105: 1663–1681

    CAS  Google Scholar 

  7. Sadler K, Tam JP. Peptide dendrimers: Applications and synthesis. Molecular Biotechnol. 2002, 90: 195–229

    CAS  Google Scholar 

  8. Kensinger RD, Catalone BJ, Krebs FC, Wigdahl B, Schengrund CL. Novel polysulfated galactose-derivatized dendrimers as binding antagonists of human immunodeficiency virus type 1 infection. Antimic Agents Chemother, 2004 48: 1614–1623

    CAS  Google Scholar 

  9. Kinberger GA, Cai WB, Goodman M. Collagen mimetic dendrimers. J Am Chem Soc, 2002, 124: 15162–15163

    CAS  Google Scholar 

  10. Zeng F, Zimmerman SC. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly, Chem Rev, 1997, 97: 1681–1712

    CAS  Google Scholar 

  11. Kaneshiro TL, Wang XL, Lu ZR. Synthesis, characterization and gene delivery of poly-l-lysine octa(3-aminopropyl) silsesquioxane dendrimers: Nanoglobular drug carriers with precisely defined molecular architectures. Mol Pharmaceutics, 2007, 4: 759–768

    CAS  Google Scholar 

  12. Dykes GM, Brierley LJ, Smith DK, McGrail PT, Seeley GJ. Supramolecular solubilisation of hydrophilic dyes by using individual dendritic branches, Chem Eur J, 2001, 7: 4730–4739

    CAS  Google Scholar 

  13. Choi JS, Lee EJ, Choi YH, Jeong YJ, Park JS. Poly(ethyleneglycol)-block-poly(l-lysine) dendrimer: novel linear polymer/dendrimer block copolymer forming a spherical water-soluble polyionic complex with DNA. Bioconjugate Chem, 1999, 10: 62–65

    CAS  Google Scholar 

  14. Bodanzky M, Bodanzky A, Bailey P. The Practice of Peptide Synthesis. New York: Springer, 1984

    Google Scholar 

  15. Sakakibara S. Synthesis of large peptides in solution. Biopolymers, 1995, 37: 17–28

    CAS  Google Scholar 

  16. Sakakibara S. Chemical synthesis of proteins in solution. Biopolymers, 1999, 51: 279–296

    CAS  Google Scholar 

  17. Kates SA, Albericio F. Solid-Phase Synthesis. A Practical Guide. New York: Marcel Dekker, 2000

    Google Scholar 

  18. Merrifield RB. Solid phase peptide synthesis I. The synthesis of a tetrapeptide. J Am Chem Soc, 1963, 85: 2149–2154

    CAS  Google Scholar 

  19. Zeng ST, Yang Y, Yuan XB, Chang J. Development of synthesis of peptide dendrimer (in Chinese). Chin Polym Bull, 2006, 10: 1–9

    Google Scholar 

  20. Tian SL, Cai MS. Protocol method in solid phase peptide synthesis (in Chinese). Chemistry, 1992, 2: 17–22

    Google Scholar 

  21. Crespo L, Sanclimens G, Montaner B, Pérez-Tomás R, Royo M, Pons M, Albericio F, Giralt E. Peptide dendrimers based on polyproline helices. J Am Chem Soc, 2002, 124: 8876–8883

    CAS  Google Scholar 

  22. Sanclimens G, Crespo L, Pons M, Giralt E, Albericio F, Royo M. Saturated resins or stress of the resin. Tetrahedron Lett, 2003, 44: 1751–1754

    CAS  Google Scholar 

  23. Denkewalter RG, Kole J, Lukasavage WJ. Macromolecular highly branched homogeneous compound based on lysine units. US Patent 4289872, 1981-09-16

  24. Ohsaki M, Okuda T, Wada A, Hirayama T, Niidome T, Aoyagi H. In vitro gene transfection using dendritic poly(l-lysine). Biconjugate Chem, 2002, 13: 510–517

    CAS  Google Scholar 

  25. He J, Ma Y, Zhao YF. Synthesis and applications of peptide dendrimer (in Chinese). Prog Chem, 2005, 17: 468–476

    CAS  Google Scholar 

  26. Tam JP, Xu J, Eom KD. Methods and strategies of peptide ligation. Biopolymers, 2001, 60: 194–209

    CAS  Google Scholar 

  27. Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev, 2009, 109: 3141–3157

    CAS  Google Scholar 

  28. Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, Pyun J, Fréchet JMJ, Sharpless KB, Fokin VV. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew Chem Int Ed, 2004, 43: 3928–3932

    CAS  Google Scholar 

  29. Wu P, Malkochb M, Huntb JN, Vestbergb R, Kaltgrada E, Finn MG, Fokin VV, Sharpless KB, Hawker CJ. Multivalent bifunctional dendrimers prepared by click chemistry. Chem Commun, 2005: 5775–5777

  30. Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed, 2001, 40: 2004–2021

    CAS  Google Scholar 

  31. Grayson SM, Fréchet JMJ. Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev, 2001, 101: 3819–3968

    CAS  Google Scholar 

  32. Lee JW, Kim JH, Kim HL, Han SC, Kim JH, Shin WS, Jin SH. Synthesis of symmetrical and unsymmetrical PAMAM dendrimers by fusion between azide and alkyne functionalized PAMAM dendrons. Bioconjugate Chem, 2007, 18: 579–584

    CAS  Google Scholar 

  33. Lee JW, Kim JH, Kim BK, Kim JH, Shin WS, Jin SH. Convergent synthesis of PAMAM dendrimers using click chemistry of azidefunctionalized PAMAM dendrons. Tetrahedron, 2006, 62: 9193–9200

    CAS  Google Scholar 

  34. Yim CB, Boerman OC, Visser MD, Jong MD, Dechesne AC, Rijkers DTS, Liskamp RMJ. Versatile conjugation of octreotide to dendrimers by cycloaddition “click” chemistry to yield high-affinity multivalent cyclic peptide dendrimers. Bioconjugate Chem, 2009, 20: 1323–1331

    CAS  Google Scholar 

  35. Kuijpers BHM, Groothuys S, Soede AC, Laverman P, Boerman OC, Delft FLV, Rutjes FPJT. Preparation and evaluation of glycosylated arginine-glycine-aspartate (RGD) derivatives for integrin targeting. Bioconjugate Chem, 2007, 18: 1847–1854

    CAS  Google Scholar 

  36. Ellen MM, van Brander DB, Meijer EW. Poly(propylene imine) dendrimers: Large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed, 1993, 32: 1308–1311

    Google Scholar 

  37. Hawker C, Fréchet JMJ. A new convergent approach to monodisperse dendritic macromolecules. J Chem Soc Chem Commun, 1990, (15): 1010–1013

    Google Scholar 

  38. Hawker CJ, Fréchet JMJ. Preparation of polymers with controlled molecular architecture A new convergent approach to dendritic macromolecules. J Am Chem Soc, 1990, 112: 7638–7647

    CAS  Google Scholar 

  39. Hawker CJ, Wooley KL, Fréchet JMJ. Unimolecular micelles and globular amphiphiles:dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc Perkin Trans 1, 1993, 1287–1297

  40. Kawaguchi T, Walker KL, Wilkins CL, Moore JS. Double exponential dendrimer growth. J Am Chem Soc, 1995, 117: 2159–2165

    CAS  Google Scholar 

  41. Kantchev EAB, Chang CC, Chang DK. Direct Fmoc/tert-Bu solid phase synthesis of octamannosyl polylysine dendrimer-peptide conjugates. Biopolymers, 2006, 84: 232–240

    CAS  Google Scholar 

  42. Shao J, Tam JP. Unprotected peptides as building blocks for the synthesis of peptide dendrimers with oxime, hydrazone, and thiazolidine linkages. J Am Chem Soc, 1995, 117: 3893–3899

    CAS  Google Scholar 

  43. Sasaki T, Kaiser ET. Helichrome: synthesis and enzymic activity of a designed hemeprotein. J Am Chem Soc, 1989, 111: 380–381

    CAS  Google Scholar 

  44. Finikova O, Galkin A, Rozhkov V, Cordero M, Hägerhäll C, Vinogradov S. Porphyrin and tetrabenzoporphyrin dendrimers: Tunable membrane-impermeable fluorescent pH nanosensors. J Am Chem Soc, 2003, 125: 4882–4893

    CAS  Google Scholar 

  45. Xu M, Tang K, Zhang T, Yu Xuhai. Progress in functional dendrimers. J Funct Poly, 2001, 14: 481–487

    CAS  Google Scholar 

  46. Leiding T, Górecki, K, Kjellman T, Vinogradov SA, Hägerhäll C, Årsköld SP. Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobes. Anal Biochem, 2009, 2: 296–305

    Google Scholar 

  47. Choi JS, Joo DH, Kim CH, Kim K, Park JS. Synthesis of a barbell-like triblock copolymer, poly(l-lysine) dendrimer-block-poly (ethyleneglycol)-block-poly(l-lysine) dendrimer, and its self-assembly with plasmid DNA. J Am Chem Soc, 2000, 122: 474–480

    CAS  Google Scholar 

  48. Chapman TM, Hillyer GL, Mahan EJ, Shaffer KA. Hydraamphiphiles: Novel linear dendritic block copolymer surfactants. J Am Chem Soc, 1994, 116: 11195–11196

    CAS  Google Scholar 

  49. Kress J, Rosner A, Hirsch A. Depsipeptide dendrimers. Chem Eur J, 2000, 6: 247–257

    CAS  Google Scholar 

  50. Kim YS, Gil ES, Lowe TL. Synthesis and characterization of thermoresponsive co-biodegradable linear-dendritic copolymers. Macromolecules, 2006, 39: 7805–7811

    CAS  Google Scholar 

  51. Kaminskas LM, Boyd BJ, Karellas P, Krippner GY, Lessene R, Kelly B, Porter CJH. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly l-lysine dendrimers. Mol Pharmaceutics, 2008, 5: 449–463

    CAS  Google Scholar 

  52. Gillies ER, Dy E, Fréchet JMJ, Szoka FC. Biological evaluation of polyester dendrimer: Poly(ethylene oxide) bow-tie hybrids with tunable molecular weight and architecture. Mol Pharm, 2005, 2: 129–138

    CAS  Google Scholar 

  53. Florence AT, Sakthivel T, Toth I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J Control Release, 2000, 65: 253–259

    CAS  Google Scholar 

  54. Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev, 2008, 60: 1037–1055

    CAS  Google Scholar 

  55. Sashima H, Shigemasa Y, Roy R. Chemical modification of chitosan hyperbranched chitosan-sialic acid dendrimer hybrid with tetraethylene glycol spacer. Macromolecules, 2000, 33: 6913–6915

    Google Scholar 

  56. Niederhafner P, Sebestika J, Jezeka J. Glycopeptide dendrimers. Part I. J Pept Sci, 2008, 14: 2–43

    CAS  Google Scholar 

  57. Niederhafner P, Sebestika J, Jezeka J. Glycopeptide dendrimers. Part II. J Pept Sci, 2008, 14: 44–65

    CAS  Google Scholar 

  58. Niederhafner P, Sebestika J, Jezeka J. Glycopeptide dendrimers. Part III-a review: Use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseases. J Pept Sci, 2008, 14: 556–587

    CAS  Google Scholar 

  59. Baigude H, Katsuraya K, Okuyama K, Yachi Y, Sato S, Uryu T. Synthesis of dicarboxylate oligosaccharide multilayer terminal functionality upon poly(lysine) dendrimer scaffolding. J Polym Sci Part A Polym Chem. 2002, 40: 3622–3633

    CAS  Google Scholar 

  60. Fu YJ, Nitecki DE, Maltby D, Simon GH, Berejnoi K, Raatschen HJ, Yeh BM, Shames DM, Brasch RC. Dendritic iodinated contrast agents with PEG-cores for CT imaging: Synthesis and preliminary characterization. Bioconjugate Chem, 2006, 17: 1043–1056

    CAS  Google Scholar 

  61. Galande AK, Hilderbrand SA, Weissleder R, Tung CH. Enzyme-targeted fluorescent imaging probes on a multiple antigenic peptide core. J Med Chem, 2006, 49: 4715–4720

    CAS  Google Scholar 

  62. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR, Holl MMB. The binding avidity of nanoparticle-base multivalent targeted drug delivery platform. Chem Biol, 2007, 14:107–115

    CAS  Google Scholar 

  63. Majoros IJ, Thomas TP, Mehta CB, Baker JR. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem, 2005, 48: 5892–5899

    CAS  Google Scholar 

  64. Singh P, Gupta U, Asthana A, Jain NK. Folate and folate-PEGPAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chem, 2008, 19: 2239–2252

    CAS  Google Scholar 

  65. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev, 2006, 58: 1532–1555

    CAS  Google Scholar 

  66. Sanvicens N, Marco MP. Multifunctional nanoparticles-properties and prospects for use in human medicine. Trends Biotechnol, 2008, 26: 425–433

    CAS  Google Scholar 

  67. Bogdanov AA, Weissleder R, Brady TJ. Long-circulating blood pool imaging agents. Adv Drug Deliver Rev, 1995, 16: 335–348

    CAS  Google Scholar 

  68. Sachse A, Leike JUD, Thomas S, Wagner SED, Roling GL, Krause W, Brandl M. Biodistribution and computed tomography blood-pool imaging properties of polyethylene glycol-coated iopromide-carrying liposomes. Invest Radiol, 1997, 32: 44–50

    CAS  Google Scholar 

  69. Yordanov AT, Lodder AL, Woller EK, Cloninger MJ, Patronas N, Milenic D, Brechbiel MW. Novel iodinated dendritic nanoparticles for computed tomography (CT) imaging. Nano Lett, 2002, 2: 595–599

    CAS  Google Scholar 

  70. Krause W, Hackmann-Schlichter N, Maier FK, Müller R. Dendrimers in diagnostics. (in: Top Curr Chem). Heidelberg Springer, 2000, 210: 261–308

    CAS  Google Scholar 

  71. Li C, Winnard PT, Takagi T, Artemov D, Bhujwalla ZM. multimodal image-guided enzyme/prodrug cancer therapy. J Am Chem Soc, 2006, 128: 15072–15073

    CAS  Google Scholar 

  72. Daldrup-Link HE, Brasch RC. Breast MR imaging contrast medium macromolecular contrast medium. Eur Radiol, 2003, 13: 354–365

    Google Scholar 

  73. Wiener EC, Auteri FP, Chen JW, Brechbiel MW, Gansow OA, Schneider DS, Belford RL, Clarkson RB, Lauterbur PC. Molecular dynamics of ion-chelate complexes attached to dendrimers. J Am Chem Soc, 1996, 118: 7774–7782

    CAS  Google Scholar 

  74. Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC. Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Magn Reson Med, 1994, 31: 1–8

    CAS  Google Scholar 

  75. Kobayashi H, Kawamoto S, Jo SK, Bryant HL, Brechbiel MW, Star RA. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjugate Chem, 2003, 14: 388–394

    CAS  Google Scholar 

  76. Sato N, Kobayashi H, Hiraga A, Saga T, Togashi K, Konishi J, Brechbiel MW. Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn Reson Med, 2001, 46: 1169–1173

    CAS  Google Scholar 

  77. Cloninger MJ. Biological applications of dendrimers. Curr Opin Chem Biol, 2002, 6: 742–748

    CAS  Google Scholar 

  78. Luo K. New Generation Biomedical Materials: Peptide Dendrimers and Their Application in Biomedicine (in Chinese). Ph D Dissertation of Sichuan Universtiy, 2009

  79. Fu YJ, Raatschen HJ, Nitecki DE, Wendland MF, Novikov V, Fournier LS, Cyran C, Victor R, Shames DM, Brasch RC. Cascade polymeric MRI contrast media derived from poly(ethylene glycol) cores: Initial syntheses and characterizations. Biomacromolecules, 2007, 8: 1519–1529

    CAS  Google Scholar 

  80. Liu M, Guo YM, Wang P, Guo XJ, Yang JL. Characteristics and in vitro imaging study of matrix metalloproteinase-2 targeting activable cell penetrating peptide (in Chinese). National Med J China, 2007, 87(4): 233–239

    CAS  Google Scholar 

  81. Boutry S, Burtea C, Laurent S, Toubeau G, Elst LV, Muller RN. Magnetic resonance imaging of inflammation with a specific selectintargeted contrast agent. Magn Reson Med, 2005, 53: 800–807

    CAS  Google Scholar 

  82. Wiener EC, Konda S, Shadron A, Brechbiel M, Gansow O. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest Radiol, 1997, 32: 748–754

    CAS  Google Scholar 

  83. Konda SD, Aref M, Brechbiel M, Wiener EC. Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor — Work in progress. Invest Radiol, 2000, 35: 50–57

    CAS  Google Scholar 

  84. Takahashi M, Hara Y, Aoshima K, Kurihara H, Oshikawa T, Yamashita M. Utilization of dendritic framework as a multivalent ligand: A functionalized gadolinium(III) carrier with glycoside cluster periphery. Tetrahedron Lett, 2000, 41: 8485–8488

    CAS  Google Scholar 

  85. Woller EK, Walter ED, Morgan JR, Singel DJ, Cloninger MJ. Altering the strength of lectin binding interactions and controlling the amount of lectin clustering using mannose/hydroxyl-functionalized dendrimers. J Am Chem Soc, 2003, 125: 8820–8826

    CAS  Google Scholar 

  86. Wolfenden ML, Cloninger MJ. Mannose/glucose-functionalized dendrimers to investigate the predictable tunability of multivalent interactions. J Am Chem Soc, 2005, 127: 12168–12169

    CAS  Google Scholar 

  87. Zanini D, Roy R. Synthesis of new α-thiosialodendrimers and their binding properties to the sialic acid specific lectin from limax flavus. J Am Chem Soc, 1997, 119: 2088–2095

    CAS  Google Scholar 

  88. Zanini D, Roy R. Practical synthesis of starburst PAMAM α-thiosialodendrimers for probing multivalent carbohydrate-lectin binding properties. J Org Chem, 1998, 63: 3486–3491

    CAS  Google Scholar 

  89. Baal I, Malda H, Synowsky SA, van Dongen JLJ, Hackeng TM, Merkx M, Meijer EW. Multivalent peptide and protein dendrimers using native chemical ligation. Angew Chem Int Ed, 2005, 44: 5052–5057

    Google Scholar 

  90. Rijkers DTS, Esse GW, Merkx R, Brouwer AJ, Jacobs HJF, Pieters RJ, Liskamp RMJ. Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry. Chem Commun, 2005, 4581–4583

  91. Kluger R, Zhang J. Hemoglobin dendrimers: Functional protein clusters. J Am Chem Soc, 2003, 125: 6070–6071

    CAS  Google Scholar 

  92. Wu CC, Brechbiel MW, Kozak RW, Gansow OA. Metal-chelatedendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett, 1994, 4: 449–454

    CAS  Google Scholar 

  93. Choi YS, Mecke A, Orr BG, Holl MMB, Baker JR. DNA-directed synthesis of generation 7 and 5 PAMAM dendrimer nanoclusters. Nano Lett, 2004, 4: 391–397

    CAS  Google Scholar 

  94. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magnetic resonance materials in physics. Biol Med, 2001, 12: 104–113

    CAS  Google Scholar 

  95. Konda SD, Wang S, Brechbiel M, Wiener EC. Biodistribution of a Gd-153-folate dendrimer, generation = 4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest Radiol, 2002, 37: 199–204

    CAS  Google Scholar 

  96. Swanson SD, Kukowska-Latallo JF, Patri AK, Chen CY, Ge S, Cao ZY, Kotlyar A, East AT, Baker JR. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomed, 2008, 3(2): 201–210

    CAS  Google Scholar 

  97. Dirksen A, Langereis S, Waal BFM, Genderen MHP, Hackeng TM, Meijer EW. A supramolecular approach to multivalent target-specific MRI contrast agents for angiogenesis. Chem Commun, 2005, 2811–2813

  98. Xu H, Regino CAS, Koyama Y, Hama Y, Gunn AJ, Bernardo M, Kobayashi H, Choyke PL, Brechbiel MW. Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjugate Chem, 2007, 18: 1474–1482

    CAS  Google Scholar 

  99. Anderson SA, Rader RK, Westlin WF, Null C, Jackson D, Lanza GM, Wickline SA, Kotyk JJ. Magnetic resonance contrast enhancement of neovasculature with αvβ3-targeted nanoparticles. Magn Reson Med, 2000, 44: 433–439

    CAS  Google Scholar 

  100. Luo K, Liu G, Zhang XW, She WC, He B, Nie Y, Li L, Wu Y, Zhang ZR, Gong QY, Gao FB, Song B, Ai H, Gu ZW. Functional L-lysine dendritic macromolecules as liver imaging probes. Macromol Biosci, 2009, 9: 1227–1236

    CAS  Google Scholar 

  101. Striebel HM, Hirschfeld EB, Egerer R, Földes-Papp Z, Tilz GP, Stelzner A. Enhancing sensitivity of human herpes virus diagnosis with DNA microarrays using dendrimers. Exp Mol Pathol, 2004, 77: 89–97

    CAS  Google Scholar 

  102. McIntyre JO, Fingleton B, Wells KS, Piston DW, Lynch CC, Gautam S, Matrisian LM. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem J, 2004, 377: 617–628

    CAS  Google Scholar 

  103. Ternon M, Díaz-Mochón JJ, Belsom A, Bradley M. Dendrimers and combinatorial chemistry-tools for fluorescent enhancement in protease assays. Tetrahedron, 2004, 60: 8721–8728

    CAS  Google Scholar 

  104. Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today, 2006, 11: 812–818

    CAS  Google Scholar 

  105. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, Emanuele AD. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm, 2003, 252: 263–266

    CAS  Google Scholar 

  106. Boas U, Christensen JB, Heegaard PMH. Dendrimers in Medicine and Biotechnology. London: Roy Soc Chem, 2006

    Google Scholar 

  107. Boas U, Karlsson AJ, Waal BFMD, Meijer EW. Synthesis and properties of new thiourea-functionalized poly(propylene imine) dendrimers and their role as hosts for urea functionalized guests. J Org Chem, 2001, 66: 2136–2145

    CAS  Google Scholar 

  108. Boas U, Söntjens SH, Jensen KJ, Christensen JB, Meijer EW. New dendrimer-peptide host-guest complexes: Towards dendrimers as peptide carriers. ChemBioChem, 2002, 3: 433–439

    CAS  Google Scholar 

  109. Agrawal P, Umesh Gupta U, Jain NK. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials, 2007, 28: 3349–3359

    CAS  Google Scholar 

  110. Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: An expanding horizon. Chem Rev, 2009, 109: 49–87

    CAS  Google Scholar 

  111. Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials, 2006, 27: 660–669

    CAS  Google Scholar 

  112. Kurtoglu YE, Navath RS, Wang B, Kannan S, Romero R, Kannan RM. Poly(amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials, 2009, 30: 2112–2121

    CAS  Google Scholar 

  113. Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, Minko T. Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjugate Chem, 2006, 17: 1464–1472

    CAS  Google Scholar 

  114. Khandare J, Kolhe P, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Synthesis, cellular transport, and activity of polyamidoamine dendrimer-methylprednisolone conjugates. Bioconjugate Chem, 2005, 16: 330–337

    CAS  Google Scholar 

  115. Gurdag S, Khandare J, Stapels S, Matherly LH, Kannan RM. Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and resistant cell lines. Bioconjugate Chem, 2006, 17: 275–283

    CAS  Google Scholar 

  116. Zhuo RX, Du B, Lu ZR. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Control Release, 1999, 57: 249–257

    CAS  Google Scholar 

  117. Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Fréchet JM, Dy EE, Szoka FC. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA, 2006, 103: 16649–16654

    CAS  Google Scholar 

  118. Okuda T, Kawakami S, Aimoto N, Niidome T, Yamashita F, Hashida M. PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release, 2006, 116: 330–336

    CAS  Google Scholar 

  119. Boyd JB, Kaminskas LM, Karellas P, Krippner G, Lessene R, Porter CJH. Cationic poly-l-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Mol Pharm, 2006, 3: 614–627

    CAS  Google Scholar 

  120. Kaminskas LM, Boyd BJ, Karellas P, Kelly GY, Lessene R, Kelly B, Porter CJH. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of pegylated poly l-lysine dendrimers. Mol Pharm, 2008, 5: 449–463

    CAS  Google Scholar 

  121. Kaminskas LM, Kelly BD, Mchleod VM, Boyd BJ, Krippner GY, Williams ED, Porter CJH. Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Mol Pharm, 2009, 6: 1190–1204

    CAS  Google Scholar 

  122. Fox ME, Guillaudeu S, Fréchet JMJ, Jerger K, Macaraeg N, Szoka FC. Synthesis and in vivo antitumor efficacy of PEGylated poly (l-lysine) dendrimer-camptothecin conjugates. Mol Pharm, 2009, 6: 1562–1572

    CAS  Google Scholar 

  123. Shukla S, Wu G, Chatterjee M, Yang WL, Sekido M, Diop LA, Müller R, Sudimack JJ, Lee RJ, Barth RF, Tjarks W. Synthesis and biological evaluation of folate receptor-targeted boronated pamam dendrimers as potential agents for neutron capture therapy. Bioconjugate Chem, 2003, 14: 158–167

    CAS  Google Scholar 

  124. Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR. Synthesis and in vitro testing of J591 antibody—Dendrimer conjugates for targeted prostate cancer therapy. Bioconjugate Chem, 2004, 15: 1174–1181

    CAS  Google Scholar 

  125. Lesniak WG, Kariapper MST, Nair BM, Tan W, Huston A, Balogh LP, Khan MK. Synthesis and characterization of PAMAM dendrimer-based multifunctional nanodevices for targeting αvβ3 integrins. Bioconjugate Chem, 2007, 18: 1148–1154

    CAS  Google Scholar 

  126. Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials, 2007, 28: 504–512

    CAS  Google Scholar 

  127. Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J Biomed Mater Res Part A, 2007, 82A: 92–103

    CAS  Google Scholar 

  128. Tam JP. Synthetic peptide vaccine design: Synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci USA, 1988, 85: 5409–5413

    CAS  Google Scholar 

  129. Tam JP, Lu YA. Vaccine engineering: enhancement of immunogenicityof synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T- and B-cell epitopes. Proc Natl Acad Sci USA, 1989, 86: 9084–9088

    CAS  Google Scholar 

  130. Tam JP, Clavijo P, Lu YA, Nussenzweig V, Nussenzweig R, Zavala F. Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria. J Exp Med, 1990, 171: 299–306

    CAS  Google Scholar 

  131. Oliveira ED, Villén J, Giralt E, Andreu D. Synthetic Approaches to multivalent lipopeptide dendrimers containing cyclic disulfide epitopes of foot-and-mouth disease virus. Bioconjugate Chem, 2003, 14: 144–152

    Google Scholar 

  132. Baigude H, Katsuraya K, Okuyama K, Uryu T. Synthesis of structurally-controlled AIDS vaccine model with glyco-peptide dendrimer scaffolds. Macromol Chem Phys, 2004, 205: 684–691

    CAS  Google Scholar 

  133. Gong Y, Matthews B, Cheung D, Tam T, Gadawski I, Leung D, Holan G, Raff J, Sacks S. Evidence of dual sites of action of dendrimers: SPL-2999 inhibits both virus entry and late stages of herpes simplex virus. Antiv Res, 2002, 55: 319–329

    CAS  Google Scholar 

  134. Jiang YH, Emau P, Cairns JS, Flanary L, Morton WR, McCarthy TD. SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. AIDS Res Hum Retrov, 2005, 21: 207–213

    CAS  Google Scholar 

  135. Tam JP, Lu YA, Yang JL. Antimicrobial dendrimeric peptides. Eur J Biochem, 2002, 269: 923–932

    CAS  Google Scholar 

  136. Nagahori N, Lee RT, Nishimura SI, Pagé D, Roy R, Lee YC. Inhibition of adhesion of type 1 fimbriated Escherichia coli to highly mannosylated ligands. ChemBioChem, 2002, 3: 836–844

    CAS  Google Scholar 

  137. Kasai S, Nagasawa H, Shimamura M, Uto Y, Hori H. Design and synthesis of antiangiogenic heparin-binding arginine dendrimer mimicking the surface of endostatin. Bioorg Med Chem Lett, 2002, 12: 951–954

    CAS  Google Scholar 

  138. Mulligan RC. The basic science of gene therapy. Science, 1993, 260: 926–932

    CAS  Google Scholar 

  139. Gu JR, Cao XT. Gene Therapy (in Chinese). Beijing: Sci Press, 2001

    Google Scholar 

  140. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials, 2008, 29: 3477–3496

    CAS  Google Scholar 

  141. Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem, 1987, 262: 4429–4432

    CAS  Google Scholar 

  142. Mousazadeh M, Palizban A, Salehi R, Salehi M. Gene delivery to brain cells with apoprotein E derived peptide conjugated to polylysine (apoEdp-PLL). J Drug Targ, 2007, 15: 226–230

    CAS  Google Scholar 

  143. Dekie L, Toncheva V, Dubruel P, Schacht EH, Barrett L, Seymour LW. Poly-l-glutamic acid derivatives as vectors for gene therapy. J Control Release, 2000, 65: 187–202

    CAS  Google Scholar 

  144. Fischer D, Bieber T, Li YX, Elsässer HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res, 1999, 16: 1273–1279

    CAS  Google Scholar 

  145. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther, 1999, 6: 595–605

    CAS  Google Scholar 

  146. Breunig M, Lungwitz U, Liebl R, Fontanari C, Klar J, Kurtz A, Blunk T, Goepferich A. Gene delivery with tow molecular weight linear polyethytenimines. J Gene Med, 2005, 7: 1287–1298

    CAS  Google Scholar 

  147. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc Natl Acad Sci USA, 1995, 92: 7297–7301

    CAS  Google Scholar 

  148. Gosselin MA, Guo WJ, Lee RJ. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjugate Chem, 2001, 12: 989–994

    CAS  Google Scholar 

  149. Jeon O, Yang HS, Lee TJ, Kim BS. Heparin-conjugated polyethyleneimine for gene delivery. J Control Release, 2008, 132: 236–242

    CAS  Google Scholar 

  150. Swami A, Aggarwal A, Pathak A, Patnaik S, Kumar P, Singh Y, Gupta KC. Imidazolyl-PEI modified nanoparticles for enhanced gene delivery. Int J Pharm, 2007, 335: 180–192

    CAS  Google Scholar 

  151. Ahn HH, Lee JH, Kim KS, Lee JY, Kim MS, Khang G, Lee IW, Lee HB. Polyethyleneimine-mediated gene delivery into human adipose derived stem cells. Biomaterials, 2008, 29: 2415–2422

    CAS  Google Scholar 

  152. Zinselmeyer BH, Mackay SP, Schatzlein AG, Uchegbu IF. The lower-generation polypropylenimine dendrimers are effective genetransfer agents. Pharm Res, 2002, 19: 960–967

    CAS  Google Scholar 

  153. Russ V, Günther M, Halama A, Ogris M, Wagner E. Oligoethylenimine-grafted polypropylenimine dendrimers as degradable and biocompatible synthetic vectors for gene delivery. J Control Release, 2008, 132: 131–140

    CAS  Google Scholar 

  154. Wang J, Mao HQ, Leong KW. A novel biodegradable gene carrier based on polyphosphoester. J Am Chem Soc, 2001, 123: 9480–9481

    CAS  Google Scholar 

  155. Kabanov AV, Astafieva IV, Maksimova IV, Lukanidin EM, Georgiev GP, Kabanov VA. Efficient transformation of mammalian cells using DNA interpolyelectrolyte complexes with carbon chain polycations. Bioconjugate Chem, 1993, 4: 448–454

    CAS  Google Scholar 

  156. Borchard G. Chitosans for gene delivery. Adv Drug Deliver Rev, 2001, 52: 145–150

    CAS  Google Scholar 

  157. Strand SP, Issa MM, Christensen BE, Vårum KM, Artursson P. Tailoring of chitosans for gene delivery: Novel self-branched glycosylated chitosan oligomers with improved functional properties. Biomacromolecules, 2008, 9: 3268–3276

    CAS  Google Scholar 

  158. Leong KW, Mao HQ, Le Truong VL, Roy K, Walsh SM, August JT. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release, 1998, 53: 183–193

    CAS  Google Scholar 

  159. Wang ZY, Zhao Y, Ren L, Jin LH, Sun LP, Yin P, Zhang YF, Zhang QQ. Novel gelatin-siloxane nanoparticles decorated by Tat peptide as vectors for gene therapy. Nanotechnology, 2008, 19: 445103

    Google Scholar 

  160. Haensler J, Szoka FC. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture, Bioconjugate Chem, 1993, 4: 372–379

    CAS  Google Scholar 

  161. Bielinska A, Kukowska-Latallo JF, Johnson J, Tomalia DA, Baker JR. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res, 1996, 24: 2176–2182

    CAS  Google Scholar 

  162. Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther, 1997, 4: 823–832

    CAS  Google Scholar 

  163. Chen W, Turro NJ, Tomalia DA. Using ethidium bromide to probe the interactions between DNA and dendrimers. Langmuir, 2000, 16: 15–19

    Google Scholar 

  164. Stiriba SE, Frey H, Haag R. Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy. Angew Chem Int Ed, 2002, 41: 1329–1334

    CAS  Google Scholar 

  165. Yamagata M, Kawano T, Shiba K, Mori T, Katayamaa T, Niidome T. Structural advantage of dendritic poly(l-lysine) for gene delivery into cells. Bioorg Med Chem, 2007, 15: 526–532

    CAS  Google Scholar 

  166. Coles DJ, Yang S, Esposito A, Mitchell D, Minchin RF, Toth I. The synthesis and characterisation of a novel dendritic system for gene delivery. Tetrahedron, 2007, 63: 12207–12214

    CAS  Google Scholar 

  167. Okuda T, Sugiyama A, Niidome T, Aoyagi H. Characters of dendritic poly(l-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials, 2004, 25: 537–544

    CAS  Google Scholar 

  168. Kim TI, Baek JU, Bai CZ, Park JS. Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials, 2007, 28: 2061–2067

    CAS  Google Scholar 

  169. Choi JS, Nam K, Park JY, Kim JB, Lee JK, Park JS. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J Control Release, 2004, 99: 445–456

    CAS  Google Scholar 

  170. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Delivery Rev, 2005, 57: 2215–2237

    CAS  Google Scholar 

  171. Li Y, Zhu YD, Xia KJ, Sheng RL, Jia L, Hou XD, Xu YH, Cao A. Dendritic poly(l-lysine)-b-poly(l-lactide)-b-dendritic poly(l-lysine) amphiphilic gene delivery vectors: Roles of PLL dendritic generation and enhanced transgene efficacies via termini modification. Biomacromolecules, 2009, 10: 2284–2293

    CAS  Google Scholar 

  172. Vögtle F, Gestermann S, Hesse R, Schwierz H, Windisch B. Functional dendrimers. Prog Polym Sci, 2000, 25: 987–1041

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongWei Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Z., Luo, K., She, W. et al. New-generation biomedical materials: Peptide dendrimers and their application in biomedicine. Sci. China Chem. 53, 458–478 (2010). https://doi.org/10.1007/s11426-010-0107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0107-y

Keywords

Navigation