Skip to main content
Log in

Preparation of novel bovine hemoglobin surface-imprinted polystyrene nanoparticles with magnetic susceptibility

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemoglobin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been synthesized through multistage core-shell polymerization system using 3-aminophenylboronic acid (APBA) as functional and cross-linking monomers. Superparamagnetic molecularly imprinted polystyrene nanospheres with poly(APBA) thin films have been synthesized and used for the first time for protein molecular imprinting in an aqueous solution. The magnetic susceptibility is imparted through the successful encapsulation of Fe3O4 nanoparticles. The morphology, adsorption, and recognition properties of superparamagnetic molecularly imprinted polymers (MIPs) have been investigated using transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Rebinding experimental results show that poly(APBA) MIPs-coated superparamagnetic PS nanoparticles have high adsorption capacity for template protein bovine hemoglobin and comparatively low nonspecific adsorption. The imprinted superparamagnetic nanoparticles could easily reach the adsorption equilibrium and achieve magnetic separation in an external magnetic field, thus avoiding some problems of the bulk polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed, 1995, 34: 1812–1832

    Article  CAS  Google Scholar 

  2. Yan M, Ramström O. Molecularly Imprinted Materials: Science and Technology. New York: CRC Press, 2005

    Google Scholar 

  3. Ye L, Mosbach K. Molecular imprinting: Synthetic materials as substitutes for biological antibodies and receptors. Chem Mater, 2008, 20: 959–868

    Article  Google Scholar 

  4. Zhang H, Ye L, Mosbach K. Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J Mol Recognit, 2006, 19: 248–259

    Article  CAS  Google Scholar 

  5. Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev, 2002, 102: 1–28

    Article  CAS  Google Scholar 

  6. Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev, 2000, 100: 2495–2504

    Article  CAS  Google Scholar 

  7. Alvarez-Lorenzo C, Concheiro A. Molecularly imprinted polymers for drug delivery. J Chromatogr B, 2004, 804: 231–245

    Article  CAS  Google Scholar 

  8. Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26: 3995–4021

    Article  CAS  Google Scholar 

  9. Zhao Z L, Bian Z Y, Chen L X, He X W, Wang Y F. Synthesis and surface-modifications of iron oxide magnetic nanoparticles and applications on separation and analysis. Prog In Chem, 2006, 18: 1288–1297

    CAS  Google Scholar 

  10. Lee K S, Lee I S. Decoration of superparamagnetic iron oxide nanoparticles with Ni2+: Agent to bind and separate histidine-tagged proteins. Chem Commun, 2008, 709–711

  11. O’Brien S M, Thomas O R T, Dunnill P. Non-porous magnetic chelator supports for protein recovery by immobilised metal affinity adsorption. J Biotechnol, 1996, 50: 13–25

    Article  Google Scholar 

  12. Turner N W, Jeans C W, Brain K R, Allender C J, Hlady V H, Britt D W. From 3D to 2D: A review of the imprinting of proteins. Biotechnol Prog, 2006, 22: 1474–1489

    CAS  Google Scholar 

  13. Zhou X, Li W Y, He X W, Chen L X, Zhang Y K. Recent advances in the study of protein imprinting. Sep Puri Rev, 2007, 36: 257–283

    Article  CAS  Google Scholar 

  14. Turner N W, Liu X, Piletsky S A, Hlady V, Britt D W. Recognition of conformational changes in β-lactoglobulin by molecularly imprinted thin films. Biomacromolecules, 2007, 8: 2781–2787

    Article  CAS  Google Scholar 

  15. Kempe M, Glad M, Mosbach K. An approach towards surface imprinting using the enzyme ribonuclease A. J Mol Recognit, 1995, 8: 35–39

    Article  CAS  Google Scholar 

  16. Shi H Q, Tsai W B, Garrison M D, Ferrari S, Ratner B D. Template-imprinted nanostructured surfaces for protein recognition. Nature, 1999, 398: 593–597

    Article  CAS  Google Scholar 

  17. Yan C L, Lu Y, Gao S Y. Coating lysozyme molecularly imprinted thin films on the surface of microspheres in aqueous solutions. J Polym Sci Polym Chem, 2007, 45: 1911–1919

    Article  CAS  Google Scholar 

  18. Bossi A, Piletsky S A, Piletska E V, Righetti P G, Turner A P F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal Chem, 2001, 73: 5281–5286

    Article  CAS  Google Scholar 

  19. Chou P C, Rick J, Chou T C. C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal Chim Acta, 2005, 542: 20–25

    Article  CAS  Google Scholar 

  20. Bonini F, Piletsky S, Turner A P F, Speghini A, Bossi A. Surface imprinted beads for thr recognition of human serum albumin. Biosens Bioelectron, 2007, 22: 2322–2328

    Article  CAS  Google Scholar 

  21. Shiomi T, Matsui M, Mizukami F, Sakaguchi K. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials, 2005, 26: 5564–5571

    Article  CAS  Google Scholar 

  22. Tan C J, Chua H G, Ker K H, Tong Y W. Preparation of bovine serum albumin surface-imprinted submicrometer particles for with magnetic susceptibility through core-shell miniemulsion polymerization. Anal Chem, 2008, 80: 683–692

    Article  CAS  Google Scholar 

  23. Bossi A, Piletsky S A, Piletska E V, Righetti P G, Turner A P F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal Chem, 2001, 73: 5281–5286

    Article  CAS  Google Scholar 

  24. Ansell R J, Mosbach K. Magnetic molecularly imprinted polymer beads for using drug radioligand binding assay. Analyst, 1998, 123: 1611–1616

    Article  CAS  Google Scholar 

  25. Wang X, Wang L Y, He X W, Zhang Y K, Chen L X. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta, 2009, 78: 327–332

    Article  CAS  Google Scholar 

  26. Li L, He X W, Chen L X, Zhang Y K. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J, 2009, 4: 286–293

    Article  CAS  Google Scholar 

  27. Yamaura M, Camilo R L, Sampaio L C, Macêdo M A, Nakamura M, Toma H E. Preparation and characterization of (3-aminopropyl)-triethoxysilane-coated magnetic nanoparticles. J Magn Magn Mater, 2004, 279: 210–217

    Article  CAS  Google Scholar 

  28. Mornet S, Grasset F, Portier J, Duguet E. Maghemite@silica nanoparticles for Biological applications. Eur Cells Mater, 2002, 3: 110–113

    Google Scholar 

  29. Liu X Q, Ma Z Y, Xing J M, Liu H Z. Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J Magn Magn Mater, 2004, 270: 1–6

    Article  CAS  Google Scholar 

  30. Wang C Y, Zhu G M, Chen Z Y, Lin Z G. The preparation of magnetite Fe3O4 and its morphology control by a novel arc-electrodeposition method. Mater Res Bull, 2002, 37: 2525–2529

    Article  CAS  Google Scholar 

  31. Ye L, Cormack P A G, Mosbach K. Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal Commun, 1999, 36: 35–38

    Article  CAS  Google Scholar 

  32. Yin G, Liu Z, Zhan J, Ding F X, Yuan N J. Impacts of the surface charge property on protein adsorption on hydroxyapatite. Chem Eng J, 2002, 87: 181–186

    Article  CAS  Google Scholar 

  33. Shea K J, Spivac D A, Sellergren B. Polymer complements to nucleotide bases. Selective binding of adenine derivatives to imprinted polymers. J Am Chem Soc, 1993, 115, 3368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LangXing Chen.

Additional information

Supported by the National High-Tech Research & Development Program of China (Grant No. 2007AA10Z432), the National Basic Research Program (Grant No. 2007CB914100), the National Natural Science Foundation of China (Grant Nos. 20675040 & 20875050), and the Natural Science Foundation of Tianjin (Grant No. 07JCYBJC00500)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., He, X., Chen, L. et al. Preparation of novel bovine hemoglobin surface-imprinted polystyrene nanoparticles with magnetic susceptibility. Sci. China Ser. B-Chem. 52, 1402–1411 (2009). https://doi.org/10.1007/s11426-009-0182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0182-0

Keywords

Navigation