Skip to main content
Log in

QSAR study on estrogenic activity of structurally diverse compounds using generalized regression neural network

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Computer-based quantitative structure-activity relationship (QSAR) model has been becoming a powerful tool in understanding the structural requirements for chemicals to bind the estrogen receptor (ER), designing drugs for human estrogen replacement therapy, and identifying potential estrogenic endocrine disruptors. In this study, a simple yet powerful neural network technique, generalized regression neural network (GRNN) was used to develop a QSAR model based on 131 structurally diverse estrogens (training set). Only nine descriptors calculated solely from the molecular structures of compounds selected by objective and subjective feature selections were used as inputs of the GRNN model. The predictive power of the built model was found to be comparable to that of the more traditional techniques but requiring significantly easy implementation and a shorter computation-time. The obtained result indicates that the proposed GRNN model is robust and satisfactory, and can provide a feasible and practical tool for the rapid screening of the estrogenic activity of organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper R L, Kavlock R J. Endocrine disruptors and reproductive development: A weight-of-evidence overview. J Endocrinol, 1997, 152(2): 159–166

    Article  CAS  Google Scholar 

  2. Kavlock R J, Daston G P, DeRosa C, Fenner-Crisp P, Gray L E, Kaattari S, Lucier G, Luster M, Mac M J, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan D M, Sinks T, Tilson H A. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the U.S. EPA sponsored workshop. Environ Health Persp, 1996, 104(Suppl 4): 715–740

    Article  Google Scholar 

  3. Asikainen A, Kolehmainen M, Ruuskanen J, Tuppurainen K. Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods. Chemosphere, 2006, 62(4): 658–673

    Article  CAS  Google Scholar 

  4. Waller C L, Oprea T I, Chae K, Park H K, Korach K S, Laws S C, Wiese T E, Kelce W R, Gray L E Jr. Ligand-based identification of environmental estrogens. Chem Res Toxicol, 1996, 9(8): 1240–1248

    Article  CAS  Google Scholar 

  5. Tong W, Perkins R, Xing L, Welsh W J, Sheehan D M. QSAR models for binding of estrogenic compounds to estrogen receptor alpha and beta subtypes. Endocrinology, 1997, 138(9): 4022–4025

    Article  CAS  Google Scholar 

  6. Shi L M, Fang H, Tong W, Wu J, Perkins R, Blair R M, Branham W S, Dial S L, Moland C L, Sheehan D M. QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci, 2001, 41(1): 186–195

    Article  CAS  Google Scholar 

  7. Yu S J, Keenan S M, Tong W, Welsh W J. Influence of the structural diversity of data sets on the statistical quality of 3D-QSAR models: Predicting the estrogenic activity of xenoestrogens. Chem Res Toxicol, 2002, 15(10): 1229–1234

    Article  CAS  Google Scholar 

  8. Colemana K P, Toscano W A, Wiese T E. QSAR Models of the in vitro estrogen activity of bisphenol A analogs. QSAR Comb Sci, 2003, 22: 78–88

    Article  Google Scholar 

  9. Asikainen A, Ruuskanen J, Tuppurainen K. Spectroscopic QSAR methods and self-organizing molecular field analysis for relating molecular structure and estrogenic activity. J Chem Inf Comput Sci, 2003, 43(6): 1974–1981

    Article  CAS  Google Scholar 

  10. Waller C L. A comparative QSAR study using CoMFA, HQSAR and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds. J Chem Inf Comput Sci, 2004, 44: 758–765

    Article  CAS  Google Scholar 

  11. Lill M A, Vedani A, Dobler M. Raptor: Combining dual-shell representation, Induced-fit simulation, and hydrophobicity scoring in receptor modeling: Application toward the simulation of structurally diverse ligand sets. J Med Chem, 2004, 47(25): 6174–6186

    Article  CAS  Google Scholar 

  12. Marini F, Roncaglioni A, Novic M. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders. J Chem Inf Model, 2005, 45: 1507–1519

    Article  CAS  Google Scholar 

  13. Salomon R, Hemmen J. Accelerating back propagation through dynamic self-adaptation. Neual Networks, 1996, 9(4): 589–601

    Article  Google Scholar 

  14. Bolanca T, Cerjan-Stefanovic S, Regelja M, Regelja H, Loncaric S. Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two-phase training algorithms. J Chromatogr A, 2005, 1085: 74–85

    Article  CAS  Google Scholar 

  15. Engin M, Demirag S, Engin E, Celbi G, Ersan F, Asena E, Colakoglu Z. The classification of human tremor signals using artificial neural network. Expert Syst Appl, 2007, 33: 754–761

    Article  Google Scholar 

  16. Yao X J, Panaye A, Doucet J P. Comparative study of qsar/qspr correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J Chem Inf Model, 2004, 44: 1257–1266

    Article  CAS  Google Scholar 

  17. Liu H, Papa E, Gramatica P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol, 2006, 19: 1540–1548

    Article  CAS  Google Scholar 

  18. Specht D F A. General Regression Neural Network. IEEE T Neural Network, 1991, 2(6): 568–576

    Article  CAS  Google Scholar 

  19. Chtioui Y, Panigrahi S, Francl L. A generealized regression neural network and its application for leaf wetness prediction to forecast plant disease. Chemometr Intell Lab Syst, 1999, 48: 47–58

    Article  CAS  Google Scholar 

  20. Tomoko N. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures. J Chem Inf Comput Sci, 2003, 43: 113–119

    Article  CAS  Google Scholar 

  21. Philip D M, Peter C J. QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks. J Chem Inf Comput Sci, 2002, 42: 1460–1470

    Article  CAS  Google Scholar 

  22. Johanna K, Bettina W, Gerhard B, Klocker J, Wailzer B, Buchbauer G, Wolschann P. Bayesian neural networks for aroma classification. J Chem Inf Comput Sci, 2002, 42: 1443–1449

    Article  CAS  Google Scholar 

  23. Hilmi B C. Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modeling. Math Comput Model, 2006, 44: 640–658

    Article  Google Scholar 

  24. Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern, 1982, 43: 59–69

    Article  Google Scholar 

  25. Kohonen T, Hynninen J, Kangas J, Laaksonen J. The Self-Oraganizing Map Program Package. Technical Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science, FIN-02150 Espoo, Finland, 1996. Software available at http://www.cis.hut.fi/research/som_pak

    Google Scholar 

  26. Kuiper G G, Lemmen J G, Carlsson B, Corton J C, Safe S H, Saag P T, Burg B, Gustafsson J A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 1998, 139: 4252–4263

    Article  CAS  Google Scholar 

  27. Todeschini R, Consonni V, Mauri A, Pavan M M. Dragon 2.1. Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy, 2002

    Google Scholar 

  28. Todeschini R, Consonni V. Handbook of Molecular Descriptors. Germany: Wiley-VCH, 2000

    Google Scholar 

  29. Johhnson S R. Prediction of physicochemical properties and biological activities from molecular structure and the use of computational neural networks for the analysis of sensor apply data. Doctor Dissertation. Pennsylvania: The Pennsylvania State University, 1999

    Google Scholar 

  30. Mcelroy N R. The prediction of physical properties and biological activities of orgnanic compounds from their molecular structures. Doctor Dissertation. Pennsylvania: The Pennsylvania State University, 2003

    Google Scholar 

  31. So S, Karplus M. Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks. J Med Chem, 1996, 39: 1521–1530

    Article  CAS  Google Scholar 

  32. Rogers D, Hopfinger A J. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci, 1994, 34: 854–866

    Article  CAS  Google Scholar 

  33. Boilot P, Hines E L, Gongora M A, Folland R S. Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions. Sens Actuat B-Chem, 2003, 88: 80–88

    Article  Google Scholar 

  34. Massart D L, Vandeginste B G M, Buydens L M C. Handbook of Chemometrics and Qualimetrics, part A. Netherlands: Elsevier, 1997

    Google Scholar 

  35. Luke B T. Evolutionary programming applied to the development of quantitative structure activity relationships and quantitative structure property relationships. J Chem Inf Comput Sci, 1994, 34: 1279–1287

    Article  CAS  Google Scholar 

  36. Fang H, Tong W, Shi L, Blair R, Perkins R, Branham W S, Dial S L, Moland C L, Sheehan D M. Structure activity relationship for a large diverse set of natural, synthetic and environmental chemicals. Chem Res Toxicol, 2001, 14: 280–294

    Article  CAS  Google Scholar 

  37. Tong W, Fang H, Hong H, Xie Q, Perkins R, Anson1 J, Sheehan D M. Regulatory application of SAR/QSAR for priority setting of endocrine disruptors: A perspective. Pure Appl Chem, 2003, 75: 2375–2388

    Article  CAS  Google Scholar 

  38. Asikainen A, Ruuskanen J, Tuppurainen K. Consensus kNN QSAR: A versatile method for predicting the estrogenic activity of organic compounds in silico. A comparative study with five estrogen receptors and a large, diverse set of ligands. Environ Sci Technol, 2004, 38(24): 6724–6729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoDong Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20507008 and 20737001), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK200418) and the National Basic Research Program of China (973 Program)(Grant No. 2003CB415002)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, L., Wang, X., Luo, S. et al. QSAR study on estrogenic activity of structurally diverse compounds using generalized regression neural network. Sci. China Ser. B-Chem. 51, 677–683 (2008). https://doi.org/10.1007/s11426-008-0070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0070-z

keywords

Navigation