Skip to main content
Log in

Bounded critical Fatou components are Jordan domains for polynomials

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We prove that any bounded Fatou component of a polynomial of degree at least two, which is not (eventually) a Siegel disk, is a Jordan domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhfors L V. Lectures on Quasi-Conformal Mappings. Monterey: Wadsworth & Brooks/Cole Advanced Books & Software, 1987

    Google Scholar 

  2. Branner B, Hubbard J H. The iteration of cubic polynomials Part II: Patterns and parapatterns. Acta Math, 1992, 169: 229–325

    Article  MathSciNet  Google Scholar 

  3. Carleson L, Gamelin T W. Complex Dynamics. New York: Springer-Verlag, 1993

    Book  Google Scholar 

  4. Cheraghi D. Topology of irrationally indifferent attractors. arXiv:1706.02678v2, 2017

  5. Chéritat A. Relatively compact Siegel disks with non-locally connected boundaries. Math Ann, 2011, 349: 529–542

    Article  MathSciNet  Google Scholar 

  6. Douady A, Hubbard J H. Étude dynamique des polynômes complexes. Orsay: Publ Math d’Orsay, 1985

    MATH  Google Scholar 

  7. Goldberg L, Milnor J. Fixed points of polynomial maps. II: Fixed point portraits. Ann Sci École Norm Sup (4), 1993, 26: 51–98

    Article  MathSciNet  Google Scholar 

  8. Goluzin G M. Geometric Theory of Functions of a Complex Variable. Translations of Mathematical Monographs, vol. 26. Providence: Amer Math Soc, 1969

    Book  Google Scholar 

  9. Hubbard J H. Local connectivity of Julia sets and bifurcation loci: Three theorems of J.-C. Yoccoz. Topol Methods Modern Math, 1993, 1993: 467–511

    MathSciNet  MATH  Google Scholar 

  10. Jiang J. Infinitely renormalizable quadratic polynomials. Trans Amer Math Soc, 2000, 352: 5077–5091

    Article  MathSciNet  Google Scholar 

  11. Kahn J, Lyubich M. The quasi-additivity law in conformal geometry. Ann of Math (2), 2009, 169: 561–593

    Article  MathSciNet  Google Scholar 

  12. Kahn J, Lyubich M. Local connectivity of Julia sets for unicritical polynomials. Ann of Math, 2009, 170: 413–426

    Article  MathSciNet  Google Scholar 

  13. Kiwi J. Real laminations and the topological dynamics of complex polynomials. Adv Math, 2004, 184: 207–267

    Article  MathSciNet  Google Scholar 

  14. Kozlovski O, Shen W, van Strien S. Rigidity for real polynomials. Ann of Math (2), 2007, 165: 749–841

    Article  MathSciNet  Google Scholar 

  15. Kozlovski O, van Strien S. Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials. Proc Lond Math Soc (3), 2009, 99: 275–296

    Article  MathSciNet  Google Scholar 

  16. Levin G, van Strien S. Local connectivity of the Julia of real polynomials. Ann of Math (2), 1998, 147: 471–541

    Article  MathSciNet  Google Scholar 

  17. Lyubich M. Dynamics of quadratic polynomials, I–II. Acta Math, 1997, 178: 185–297

    Article  MathSciNet  Google Scholar 

  18. McMullen C. Automorphism of rational maps. In: Holomorphic Functions and Moduli I. Mathematical Sciences Research Institute Publications, vol. 10. New York: Springer, 1988, 31–60

    Chapter  Google Scholar 

  19. McMullen C. Complex Dynamics and Renormalization. Annals of Mathematics Studies, vol. 135. Princeton: Princeton University Press, 1994

    MATH  Google Scholar 

  20. Milnor J. Dynamics in One Complex Variable, 2nd ed. Princeton: Princeton University Press, 2000

    Book  Google Scholar 

  21. Milnor J. Local connectivity of Julia sets: Expository lectures. London Math Soc Lecture Note Ser, 2000, 274: 67–116

    MathSciNet  MATH  Google Scholar 

  22. Peng W, Qiu W, Roesch P, et al. A tableau approach of the KSS nest. Conform Geom Dyn, 2010, 14: 35–67

    Article  MathSciNet  Google Scholar 

  23. Petersen C L. On the Pommerenke-Levin-Yoccoz inequality. Ergodic Theory Dynam Systems, 1993, 13: 785–806

    MathSciNet  MATH  Google Scholar 

  24. Petersen C L, Roesch P. Parabolic tools. J Difference Equ Appl, 2010, 16: 715–738

    Article  MathSciNet  Google Scholar 

  25. Petersen C L, Zakeri S. On the Julia set of a typical quadratic polynomial with a Siegel disk. Ann of Math (2), 2004, 159: 1–52

    Article  MathSciNet  Google Scholar 

  26. Pommerenke C. Boundary Behaviour of Conformal Maps. Berlin-Heidelberg: Springer, 1992

    Book  Google Scholar 

  27. Qiu W, Yin Y. Proof of the Branner-Hubbard conjecture on Cantor Julia sets. Sci China Ser A, 2009, 52: 45–65

    Article  MathSciNet  Google Scholar 

  28. Roesch P. Puzzles de Yoccoz pour les applications à allure rationnelle. Enseign Math (2), 1999, 45: 133–168

    MathSciNet  MATH  Google Scholar 

  29. Roesch P. Cubic polynomials with a parabolic point. Ergodic Theory Dynam Systems, 2010, 30: 1843–1867

    Article  MathSciNet  Google Scholar 

  30. Shishikura M, Yang F. The high type quadratic Siegel disks are Jordan domains. arXiv: 1608.04106v3, 2016

  31. Sorensen D E K. Accumulation theorems for quadratic polynomials. Ergodic Theory Dynam Systems, 1996, 16: 555–590

    Article  MathSciNet  Google Scholar 

  32. Steinmetz N. Rational Iteration. De Gruyter Studies in Mathematics, vol. 16. Berlin: de Gruyter, 1993

    Book  Google Scholar 

  33. Tan L, Yin Y. Local connectivity of the Julia set for geometrically finite rational maps. Sci China Ser A, 1996, 39: 39–47

    MathSciNet  MATH  Google Scholar 

  34. Tan L, Yin Y. The unicritical Branner-Hubbard conjecture. In: Complex Dynamics. Wellesley: A K Peters, 2009, 215–227

Download references

Acknowledgements

This work was supported by Agence Nationale de la Recherche (Grant No. ANR-13-BS01-0002) and National Natural Science Foundation of China (Grant No. 11771387). The authors thank the late Professor Lei Tan and the referees for their careful reading and many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongcheng Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roesch, P., Yin, Y. Bounded critical Fatou components are Jordan domains for polynomials. Sci. China Math. 65, 331–358 (2022). https://doi.org/10.1007/s11425-020-1827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1827-4

Keywords

MSC(2020)

Navigation