Skip to main content
Log in

Tau functions of the charged free bosons

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study bosonic tau functions in relation with the charged free bosonic fields. It is proved that up to a constant the only tau function in the Fock space ℳ is the vacuum vector, and some tau functions are given in the completion \(\widetilde{\cal M}\) by using Schur functions. We also give a new proof of Borchardt’s identity and obtain several q-series identities by using the boson-boson correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamovic D. Classification of irreducible modules of certain subalgebras of free boson vertex algebra. J Algebra, 2003, 270: 115–132

    Article  MathSciNet  Google Scholar 

  2. Anguelova I I. The two bosonizations of the CKP hierarchy: Overview and character identities. Contemp Math, 2018, 713: 1–34

    Article  MathSciNet  Google Scholar 

  3. Anguelova I I, Cox B, Jurisich E. A-point locality for vertex operators: Normal ordered products, operator product expansions, twisted vertex algebras. J Pure Appl Algebra, 2014, 218: 2165–2203

    Article  MathSciNet  Google Scholar 

  4. Bakalov B, Fleisher D. Bosonizations of \({\widehat{\mathfrak{sl}}_2}\) and integrable hierarchies. SIGMA Symmetry Integrability Geom Methods Appl, 2015, 11: 5–23

    MathSciNet  MATH  Google Scholar 

  5. Borchardt C W. Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeugenden function. J Reine Angew Math, 1857, 53: 193–198

    MathSciNet  Google Scholar 

  6. Chen M-R, Wang S-K, Wang X-L, et al. On W1+∞ 3-algebra and integrable system. Nucl Phys B, 2015, 891: 655–675

    Article  Google Scholar 

  7. Cox B, Futorny V, Martins R A. Free field realizations of the Date-Jimbo-Kashiwara-Miwa algebra. In: Developments and Retrospectives in Lie Theory. Developments in Mathematics, vol 38. Cham: Springer, 2014, 111–136

    Google Scholar 

  8. Date E, Jimbo M, Kashiwara M, et al. Operator approach to the Kadomtsev-Petviashvili equation—transformation groups for soliton equations III. J Phys Soc Jap, 1981, 50: 3806–3812

    Article  Google Scholar 

  9. Date E, Jimbo M, Kashiwara M, et al. KP hierarchies of orthogonal and symplectic type—transformation groups for soliton equations VI. J Phys Soc Jap, 1981, 50: 3813–3818

    Article  Google Scholar 

  10. Date E, Kashiwara M, Miwa T. Vertex operators and tau functions transformation groups for soliton equations. II. Proc Japan Acad Ser A Math Sci, 1982, 57: 427–507

    Google Scholar 

  11. Dong C, Lam C H, Wang Q, et al. The structure of parafermion vertex operator algebras. J Algebra, 2010, 323: 371–381

    Article  MathSciNet  Google Scholar 

  12. Dong C, Lepowsky J. Generalized Vertex Algebras and Relative Vertex Operators. Progress in Mathematics, vol. 112. Boston: Birkhäuser, 1993

    Book  Google Scholar 

  13. Feigin B, Frenkel E. Semi-infinite Weil complex and the Virasoro algebra. Comm Math Phys, 1992, 147: 647–648

    Article  MathSciNet  Google Scholar 

  14. Frenkel E, Kac V G, Radul A, et al. W1+∞ and W(glN) with central charge N. Comm Math Phys, 1995, 170: 337–357

    Article  MathSciNet  Google Scholar 

  15. Frenkel I. Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory. J Funct Anal, 1981, 44: 259–327

    Article  MathSciNet  Google Scholar 

  16. Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Boston: Academic Press, 1988

    MATH  Google Scholar 

  17. Friedan D, Martinec E, Shenker S. Conformal invariance, supersymmetry and string theory. Nucl Phys B, 1986, 271: 93–165

    Article  MathSciNet  Google Scholar 

  18. Ishikawa M, Kawamuko H, Okada S. A Pfaffian-Hafnian analogue of Borchardt’s identity. Electron J Combin, 2005, 12: 9, 8pp

    Article  MathSciNet  Google Scholar 

  19. Jing N. Vertex operators, symmetric functions, and the spin group Γn. J Algebra, 1991, 138: 340–398

    Article  MathSciNet  Google Scholar 

  20. Jing N. Boson-fermion correspondence for Hall-Littlewood polynomials. J Math Phys, 1995, 36: 7073–7080

    Article  MathSciNet  Google Scholar 

  21. Kac V G, Raina A K, Rozhkovskaya N. Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. Advanced Series in Mathematical Physics, vol. 29. Singapore: World Scientific, 2013

    Book  Google Scholar 

  22. Kac V G, van de Leur J W. Super boson-fermion correspondence. Ann Inst Fourier (Grenoble), 1987, 37: 99–137

    Article  MathSciNet  Google Scholar 

  23. Kac V G, van de Leur J W. The ri-component KP hierarchy and representation theory. In: Important Developments in Soliton Theory. Springer Series in Nonlinear Dynamics. Berlin: Springer, 1993, 302–343

    Chapter  Google Scholar 

  24. Lepowsky J, Li H. Introduction to Vertex Operator Algebras and Their Representations. New York: Springer, 2012

    MATH  Google Scholar 

  25. Liszewski K T. The charged free boson integrable hierarchy. PhD Thesis. Raleigh: North Carolina State University, 2011

    Google Scholar 

  26. Macdonald I G. Symmetric Functions and Hall Polynomials. Oxford: Oxford University Press, 1995

    MATH  Google Scholar 

  27. van de Leur J, Orlov A Y, Shiota T. CKP hierarchy, bosonic tau function and bosonization formulae. SIGMA Symmetry Integrability Geom Methods Appl, 2012, 8: 036, 28pp

    MathSciNet  MATH  Google Scholar 

  28. Wang N, Wu K. Vertex operators, t-boson model and weighted plane partitions in finite boxes. Modern Phys Lett B, 2018, 32: 1850061, 15pp

    Article  MathSciNet  Google Scholar 

  29. Wang W. W1+∞ algebra, W3 algebra, and Friedan-Martinec-Shenker bosonization. Comm Math Phys, 1998, 195: 95–111

    Article  MathSciNet  Google Scholar 

  30. Xu X P. Introduction to Vertex Operator Superalgebras and Their Modules. Mathematics and Its Applications, vol. 456. Dordrecht: Kluwer Academic, 1998

    Book  Google Scholar 

  31. Zhang H X, Zhou J. Wreath Hurwitz numbers, colored cut-and-join equations, and 2-Toda hierarchy. Sci China Math, 2012, 55: 1627–1646

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11531004) and the Simons Foundation (Grant No. 523868). The authors thank the anonymous referees whose comments have greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, N., Li, Z. Tau functions of the charged free bosons. Sci. China Math. 63, 2157–2176 (2020). https://doi.org/10.1007/s11425-019-1735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1735-4

Keywords

MSC(2010)

Navigation