Skip to main content
Log in

Convergence of one-leg methods for nonlinear neutral delay integro-differential equations

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Some convergence results of one-leg methods for nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. It is proved that a one-leg method is E (or EB) -convergent of order p for nonlinear NDIDEs if and only if it is A-stable and consistent of order p in classical sense for ODEs, where p = 1, 2. A numerical example that confirms the theoretical results is given in the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kolmanovskii V B, Myshkis A. Introduction to The Theory and Applications of Functional Differential Equations. Dordrecht: Kluwer Academy, 1999

    MATH  Google Scholar 

  2. Hale J K, Lunel S M V. Introduction to Functional Differential Equations. Berlin: Springer-Verlag, 1993

    MATH  Google Scholar 

  3. Torelli L. Stability of numerical methods for delay differential equations. J Comput Appl Math, 25: 15–26 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Huang C M, Fu H Y, Li S F, et al. Stability analysis of Runge-Kutta methods for non-linear delay differential equations. BIT, 39: 270–280 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baker C T H. Retarded differential equations. J Comput Appl Math, 125: 309–335 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations. Oxford: Clarendon Press, 2003

    Book  MATH  Google Scholar 

  7. Kuang J X, Cong Y H. Stability of Numerical Methods for Delay Differential Equations. Beijing: Science Press, 2005

    Google Scholar 

  8. Li S F. B-theory of Runge-Kutta methods for stiff Volterra functional differential equations. Sci China Ser A, 46: 662–674 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li S F. B-theory of general linear methods for stiff Volterra functional differential equations. Appl Numer Math, 53: 57–72 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li S F. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces. Sci China Ser A, 48: 372–387 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhang C J, Vandewalle S. Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integrodifferential equations. IMA J Numer Anal, 24: 193–214 (2004)

    Article  MathSciNet  Google Scholar 

  12. Zhang C J, Vandewalle S. General linear methods for Volterra integro-differential equations with memory. SIAM J Sci Comput, 27: 2010–2031 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang W S, Li S F. Stability analysis of nonlinear delay differential equations of neutral type (in Chinese). Math Numer Sinica, 26: 303–314 (2004)

    Google Scholar 

  14. Wang W S, Li S F. On the one-leg θ-methods for solving nonlinear neutral functional differential equations. Appl Math Comput, 193: 285–301 (2007)

    Article  MathSciNet  Google Scholar 

  15. Wang W S, Zhang Y, Li S F. Nonlinear stability of one-leg methods for delay differential equations of neutral type. Appl Numer Math, 58: 122–130 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jackiewicz Z. One-step methods of any order for neutral functional differential equations. SIAM J Numer Anal, 21: 486–511 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jackiewicz Z. Qualsilinear multistep methods and variable step predictor-corrector methods for neutral functional differential equations. SIAM J Numer Anal, 23: 423–452 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Brunner H. The numerical solutions of neutral Volterra integro-differential equations with delay arguments. Ann Numer Math, 1: 309–322 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Enright W H, Hu M. Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay. Appl Numer Math, 24: 175–190 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Brunner H, Vermiglio R. Stability of solutions of neutral functional integro-differential equations and their discretiztion. Computing, 71: 229–245 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Brunner H. Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge: Cambridge University Press, 2004

    MATH  Google Scholar 

  22. Brunner H. High-order collocation methods for singular Volterra functional equations of neutral type. Appl Numer Math, 57: 533–548 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yu Y X, Li S F. Stability analysis of Runge-Kutta methods for nonlinear neutral delay integro-differential equations. Sci China Ser A, 50: 464–474 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang C J, Zhou S Z. Nonlinear stability and D-convergence of Runge-Kutta methods for DDEs. J Comput Appl Math, 85: 225–237 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Huang C M, Li S F, Fu H Y, et al. Stability and error analysis of one-leg methods for nonlinear delay differential equations. J Comput Appl Math, 103: 263–279 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Enright W H, Hayashi H. Convergence analysis of the solution of retarded and neutral delay differential equations by continuous numerical methods. SIAM J Numer Anal, 35: 572–585 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Brunner H, Zhang W. Primary discontinuities in solutions for delay integro-differential equations. Methods Appl Anal, 6: 525–533 (1999)

    MATH  MathSciNet  Google Scholar 

  28. Li S F. Theory of Computational Methods for Stiff Differential Equations (in Chinese). Changsha: Hunan Science and Technology Press, 1997

    Google Scholar 

  29. Huang C M, Li S F, Fu H Y, et al. D-convergence of one-leg methods for stiff delay differential equations. J Comput Math, 19: 601–606 (2001)

    MATH  MathSciNet  Google Scholar 

  30. Dahlquist G. G-stability is equivalent to A-stability. BIT, 18: 384–401 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems. Berlin: Spring-Verlag, 1991

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanSheng Wang.

Additional information

This work was supported by National Natural Science Foundation of China (Grant No. 10871164), the Natural Science Foundation of Hunan Province (Grant No. 08JJ6002), and the Scientific Research Fund of Changsha University of Science and Technology (Grant No. 1004259)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Li, S. Convergence of one-leg methods for nonlinear neutral delay integro-differential equations. Sci. China Ser. A-Math. 52, 1685–1698 (2009). https://doi.org/10.1007/s11425-009-0032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-009-0032-8

Keywords

MSC(2000)