Skip to main content
Log in

Dynamical Criticality: Overview and Open Questions

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Systems that exhibit complex behaviours are often found in a particular dynamical condition, poised between order and disorder. This observation is at the core of the so-called criticality hypothesis, which states that systems in a dynamical regime between order and disorder attain the highest level of computational capabilities and achieve an optimal trade-off between robustness and flexibility. Recent results in cellular and evolutionary biology, neuroscience and computer science have revitalised the interest in the criticality hypothesis, emphasising its role as a viable candidate general law in adaptive complex systems. This paper provides an overview of the works on dynamical criticality that are — To the best of our knowledge — Particularly relevant for the criticality hypothesis. The authors review the main contributions concerning dynamics and information processing at the edge of chaos, and illustrate the main achievements in the study of critical dynamics in biological systems. Finally, the authors discuss open questions and propose an agenda for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kauffman S A, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, Oxford, 1993.

    Google Scholar 

  2. Kauffman S A, At Home in the Universe, Oxford University Press, Oxford, 1996.

    Google Scholar 

  3. Packard N H, Adaptation toward the edge of chaos, Dynamic Patterns in Complex Systems, 1988, 293–301.

    Google Scholar 

  4. Langton C G, Computation at the edge of chaos: Phase transitions and emergent computation, Physica D, 1990, 42: 12–37.

    Article  MathSciNet  Google Scholar 

  5. Crutchfield J P and Young K, Computation at the Onset of Chaos, Complexity, Entropy, and Physics of Information, Addison Wesley, New Jersey, USA, 1990.

    Google Scholar 

  6. Binney J J, Dowrick N J, Fisher A J, et al., The Theory of Critical Phenomena, OxfordUniversity Press, Oxford, 1992.

    MATH  Google Scholar 

  7. Solé R V, Manrubia S C, Luque B, et al., Phase transitions and complex systems: Simple, nonlinear models capture complex systems at the edge of chaos, Complexity, 1996, 1: 13–26.

    Google Scholar 

  8. Solé R V, Phase Transitions, Princeton University Press, Princeton, 2011.

    MATH  Google Scholar 

  9. Wissel C, A universal law of the characteristic return time near threshold, Oecologia, 1984, 65: 101–107.

    Article  Google Scholar 

  10. Janke W, Johnston D A, and Kenna R, Information geometry and phase transitions, Physica A, 2004, 336: 181–186.

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang X R, Lizier J T, and Prokopenko M, Fisher information at the edge of chaos in random boolean networks, Artificial Life, 2011, 17: 315–329.

    Article  Google Scholar 

  12. Prokopenko M, Lizier J T, Obst O, et al., Relating fisher information to order parameters, Phys. Rev. E, 2011, 84: 041116:1–11.

    Google Scholar 

  13. Prokopenko M, Information dynamics at the edge of chaos: Measures, examples, and principles, Proceedings of IEEE Symposium of Artificial Life — ALIFE 2013, 2013.

    Google Scholar 

  14. Bak P, Tang C, and Wiesenfeld K, Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett., 1987, 59: 381–384.

    Article  Google Scholar 

  15. Bak P, How Nature Works: The Science of Self-Organized Criticality, Springer-Verlag, New York, 1996.

    Book  MATH  Google Scholar 

  16. Jensen H J, Self-Organized Criticality, Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  17. Sornette D, Johansen A, and Dornic I, Mapping self-organized criticality onto criticality, J. Phys. I France, 1995, 5: 325–335.

    Article  Google Scholar 

  18. Dickman R, Mu˜noz M A, Vespignani A, et al., Paths to self-organized criticality, Brazilian Journal of Physics, 2000, 30: 27–41.

    Article  Google Scholar 

  19. Bagnoli F, Palmerini P, and Rechtman R, Algorithmic mapping from criticality to self-organized criticality, Phys. Rev. E, 1997, 55: 3970–3976.

    Article  Google Scholar 

  20. Luque B, Ballestreros J F, and Muro E M, Self-organized critical random boolean networks, Phys. Rev. E, 2001, 63: 051913:1–8.

    Google Scholar 

  21. Strogatz S H, Nonlinear Dynamics and Chaos, Westview Press, Boulder, USA, 2001.

    Google Scholar 

  22. Haken H, Synergetics — An Introduction, Springer-Verlag, Berlin, 1983.

    Book  MATH  Google Scholar 

  23. Riauba L, Niaura G, Eicher-Lorka O, et al., Self-Organization in Nonequilibrium Systems, Wiley, New Jersey, USA, 1977.

    Google Scholar 

  24. Nicolis G and Prigogine I, Exploring Complexity, Freeman and Company, New York, 1989.

    MATH  Google Scholar 

  25. Polani D, Foundations and formalizations of self-organization, Advances in Applied Self- Organizing Systems, Springer, 2007, 19–37.

    Google Scholar 

  26. Wolfram S, Universality and complexity in cellular automata, Physica D, 1984, 10: 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  27. Cook M, Universality in elementary cellular automata, Complex Systems, 2004, 15: 1–40.

    MathSciNet  MATH  Google Scholar 

  28. Mitchell M, Crutchfield J P, and Hraber P T, Dynamics, computation, and the “edge of chaos”: A re-examination. Complexity: Metaphors, Models, and Reality, 1994, 497–513.

    Google Scholar 

  29. Hordijk W, The EvCA project: A brief history, Complexity, 2013, 18: 15–19.

    Article  Google Scholar 

  30. Solé R V and Miramontes O, Information at the edge of chaos in fluid neural networks, Physica D, 1995, 80: 171–180.

    Article  MATH  Google Scholar 

  31. Cover T M and Thomas J A, Elements of Information Theory, Wiley and Sons, New Jersey, USA, 2006.

    MATH  Google Scholar 

  32. Kauffman S A, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol., 1969, 22: 437–467.

    Article  MathSciNet  Google Scholar 

  33. Derrida B and Pomeau Y, Random networks of automata: A simple annealed approximation, Europhys. Lett., 1986, 1: 45–49.

    Article  Google Scholar 

  34. Shmulevich I and Kauffman S A, Activities and sensitivities in boolean network models, Phys. Rev. Lett., 2004, 93: 048701:1–8.

    Google Scholar 

  35. Rämö P, Kauffman S A, Kesseli J, et al., Measures for information propagation in boolean networks, Physica D, 2006a, 227: 100–104.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ribeiro A S, Kauffman S A, Lloyd-Price J, et al., Mutual information in random boolean models of regulatory networks, Physical Review E, 2008, 77: 011901:1–10.

    MathSciNet  Google Scholar 

  37. Krawitz P and Shmulevich I, Basin entropy in boolean network ensembles, Phys. Rev. Lett., 2007, 98: 158701:1–4.

  38. Galas D J, Nykter M, Carter G W, et al., Biological information as set-based complexity, IEEE Tran. on Information Theory, 2010, 56: 667–677.

    Article  MathSciNet  MATH  Google Scholar 

  39. Mäki-Marttunen T, Kesseli J, Kauffman S A, et al., Of the complexity of boolean network state trajectories, Proc. of WCSB 2011, 2011.

    Google Scholar 

  40. Lizier J T, The Local Information Dynamics of Distributed Computation in Complex Systems, Springer Theses Series, Springer, 2013.

    Book  MATH  Google Scholar 

  41. Lizier J T, Prokopenko M, and Zomaya A Y, The information dynamics of phase transitions in random boolean networks, Proceedings of Artificial Life XI, 2008, 374–381.

    Google Scholar 

  42. Kinouchi O and Copelli M, Optimal dynamical range of excitable networks at criticality, Nature Physics, 2006, 2: 348–351.

    Article  Google Scholar 

  43. Bertschinger N and Natschläger T, Real-time computation at the edge of chaos in recurrent neural networks, Neural Computation, 2004, 16: 1413–1436.

    Article  MATH  Google Scholar 

  44. Legenstein R and Maass W, Edge of chaos and prediction of computational performance for neural circuit models, Neural Networks, 2007, 20: 323–334.

    Article  MATH  Google Scholar 

  45. Macready W G, Siapas A G, and Kauffman S A, Criticality and parallelism in combinatorial optimization, Science, 1996, 5: 56–59.

    Article  Google Scholar 

  46. Kauffman S A and Macready W, Technological evolution and adaptive organizations, Complexity, 1995, 26: 26–43.

    Article  Google Scholar 

  47. Roli A, Criticality and parallelism in GSAT, Electronic Notes in Discrete Mathematics, 2001, 9: 150–161.

    Article  MATH  Google Scholar 

  48. Kauffman S A, Reinventing the Sacred — A New View of Science, Reason and Religion, Basic Books, 2008.

    Google Scholar 

  49. Serra R, Villani M, and Semeria A, Genetic network models and statistical properties of gene expression data in knock-out experiments, J. Theor. Biol., 2004, 227: 149–157.

    Article  MathSciNet  Google Scholar 

  50. Serra R, Villani M, Graudenzi A, et al., Why a simple model of genetic regulatory network describes the distribution of avalanches in gene expression data, J. Theor. Biol., 2007, 246: 449–460.

    Article  MathSciNet  Google Scholar 

  51. Roli A, Vernocchi F, and Serra R, Continuous Network Models of Gene Expression in Knock Out Experiments: A Preliminary Study, Artificial Life and Evolutionary computation, World Scientific Publishing, 2010.

    Google Scholar 

  52. Shmulevich I, Kauffman S A, and Aldana M, Eukaryotic cells are dynamically ordered or critical but not chaotic, PNAS, 2005, 102(38): 13439–13444.

    Article  Google Scholar 

  53. Rämö P, Kesseli J, and Yli-Harja O, Perturbation avalanches and criticality in gene regulatory networks. J. Theor. Biol., 2006, 242: 164–170.

    Article  MathSciNet  MATH  Google Scholar 

  54. Nykter M, Price N D, Aldana M, et al., Gene expression dynamics in the macrophage exhibit criticality, PNAS, 2008a, 105: 1897–1900.

    Article  Google Scholar 

  55. Balleza E, Alvarez-Buylla E R, Chaos A, et al., Critical dynamics in genetic regulatory networks: Examples from four kingdoms, PLoS ONE, 2008, 3: e2456:1–10.

    Google Scholar 

  56. Chowdhury S, Lloyd-Price J, Smolander O P, et al., Information propagation within the genetic network of Saccharomyces cerevisiae, BMC Systems Biology, 2010, 4: 1–10.

    Article  Google Scholar 

  57. Di Stefano M L, Villani M, La Rocca L, et al., Dynamically critical systems and power-law distributions: Avalanches revisited, Advances in Artificial Life, Evolutionary Computation and Systems Chemistry, 2016, 29–39.

    Chapter  Google Scholar 

  58. Lempel A and Ziv J, On the complexity of finite sequence, IEEE Trans. on Info. Theory, 1976, 22(1): 75–81.

    Article  MathSciNet  MATH  Google Scholar 

  59. Li M, Chen X, Li X, et al., The similarity metric, IEEE Trans. on Info. Theory, 2004, 50(12): 3250–3264.

    Article  MathSciNet  MATH  Google Scholar 

  60. Darabos C, Giacobini M, Tomassini M, et al., Are cells really operating at the edge of chaos? Darwin Meets von Neumann, Volume 5777 of Lecture Notes in Computer Science, Springer, 2011, 281–288.

    Google Scholar 

  61. Hanel R, Pöchacker M, and Thurner S, Living on the edge of chaos: Minimally nonlinear models of genetic regulatory dynamics, Phil. Trans. R. Soc. A, 2010, 368: 5583–5596.

    Article  MathSciNet  MATH  Google Scholar 

  62. Kaneko K, Life: An Introduction to Complex Systems Biology, Springer, Berlin Heidelberg, 2006.

    Book  MATH  Google Scholar 

  63. Beggs J M, The criticality hypothesis: How local cortical networks might optimize information processing, Phil. Trans. R. Soc. A, 2008, 366: 329–343.

    Article  MathSciNet  MATH  Google Scholar 

  64. Chialvo D R, Emergent complex neural dynamics, Nature Physics, 2010, 6: 744–750.

    Article  Google Scholar 

  65. Friedman N, Ito S, Brinkman B A W, et al., Universal critical dynamics in high resolution neuronal avalanche data, Phys. Rev. Letters, 2012, 108: 208102:1–5.

    Google Scholar 

  66. Tagliazucchi E and Chialvo D R, Brain complexity born out of criticality, “Physics, Computation and the Mind — Advances and Challenges at Interfaces”, AIP Conf., 2013.

    Google Scholar 

  67. Beggs J M and Timme N, Being critical of criticality in the brain, Frontiers in Physiology, 2012, 3: 163:1–14.

    Google Scholar 

  68. Mora T and Bialek W, Are biological systems poised at criticality? J. Stat. Phys., 2011, 144: 268–302.

    Article  MathSciNet  MATH  Google Scholar 

  69. Krotov D, et al., Morphogenesis at criticality, PNAS, 2014, 111: 3683–3688.

    Article  Google Scholar 

  70. Bailly F and Longo G, Extended critical situations: The physical singularity of life phenomena, J. Biol. Syst., 2008, 16: 309–336.

    Article  MATH  Google Scholar 

  71. Aldana M, Balleza E, Kauffman S A, et al., Robustness and evolvability in genetic regulatory networks, J. Theor. Bio., 2007, 245: 433–448.

    Article  MathSciNet  Google Scholar 

  72. Torres-Sosa C, Huang S, and Aldana M, Criticality is an emergent property of genetic networks that exhibit evolvability, PLOS Computational Biology, 2012, 8: 1–18.

    Article  Google Scholar 

  73. Nykter M, Price N D, Larjo A, et al., Critical networks exhibit maximal information diversity in structure-dynamics relationships, Phys. Rev. Lett., 2008b, 100: 058702:1–4.

    Google Scholar 

  74. Roli A, Benedettini S, Serra R, et al., Analysis of attractor distances in random boolean networks, Neural Nets — WIRN10, 2011.

    Google Scholar 

  75. Kauffman S A and Smith R G, Adaptive automata based on darwinian selection, Physica D, 1986, 22: 68–82.

    Article  MathSciNet  Google Scholar 

  76. Benedettini S, Villani M, Roli A, et al., Dynamical regimes and learning properties of evolved boolean networks, Neurocomputing, 2013, 99: 111–123.

    Article  Google Scholar 

  77. Kauffman S A, Antichaos and Adaptation, Scientific American, August 1991, 1991.

    Google Scholar 

  78. Kauffman S A and Johnsen S, Coevolution at the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches, J. Theor. Biol., 1991, 149: 467–505.

    Article  Google Scholar 

  79. Christensen K, Donangelo R, Koiller B, et al. Evolution of random networks, Physical Rev. Lett., 1998, 81: 2380–2383.

    Article  Google Scholar 

  80. Bak P and Sneppen K, Punctuated equilibrium and criticality in a simple model of evolution, Phys. Rev. Lett., 1993, 71: 4083–4086.

    Article  Google Scholar 

  81. Bornholdt S and Rohlf T, Topological evolution of dynamical networks: Global criticality from local dynamics, Phys. Rev. Lett., 2000, 84: 6114–6117.

    Article  Google Scholar 

  82. Liu M and Bassler K E, Emergent criticality from coevolution in random boolean networks, Physical Review E, 2006, 74: 041910:1–5.

    Google Scholar 

  83. Goudarzi A, Teuscher C, Gulbahce N, et al., Emergent criticality through adaptive information processing in boolean networks, Phys. Rev. Lett., 2012, 108: 128702:1–5.

    Google Scholar 

  84. Hidalgo J, Grilli J, Suweis S, et al., Information-based fitness and the emergence of criticality in living systems, PNAS, 2014, 111: 10095–10100.

    Article  Google Scholar 

  85. Campioli D, Villani M, Poli I, et al., Dynamical stability in random boolean networks, Neural nets WIRN11, Volume 234 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2011.

    Google Scholar 

  86. Villani M, Campioli D, Damiani C, et al., Dynamical regimes in non-ergodic random boolean networks, Natural Computing, 2017, 353–363.

    Google Scholar 

  87. Sperati V, Trianni V, and Nolfi S, Evolving coordinated group behaviour through maximization of mean mutual information, Swarm Intelligence Journal, 2008, 2: 73–95.

    Article  Google Scholar 

  88. Edlund J A, Chaumont N, Hintze A, et al., Integrated information increases with fitness in the evolution of animats, PLOS Comp. Biol., 2011, 7: e1002236:1–13.

    MathSciNet  Google Scholar 

  89. Joshi N J, Tononi G, and Koch C, The minimal complexity of adapting agents increases with fitness, PLOS Comp. Biol., 2013, 9: e1003111:1–10.

    MathSciNet  Google Scholar 

  90. Roli A, Benedettini S, Birattari M, et al., Robustness, evolvability and complexity in Boolean network robots, Proceedings of ECCS2011 — European Conference on Complex Systems, 2011a.

    Google Scholar 

  91. Villani M, Roli A, Filisetti A, et al., The search for candidate relevant subsets of variables in complex systems, Artificial life, 2015, 412–431.

    Google Scholar 

  92. Filisetti A, Villani M, Roli A, et al., Exploring the organisation of complex systems through the dynamical interactions among their relevant subsets, Proceedings of the European Conference on Artificial Life 2015 — ECAL2015, 2015, 286–293.

    Google Scholar 

  93. Villani M, Carra P, Roli A, et al., On the robustness of the detection of relevant sets in complex dynamical systems, Advances in Artificial Life, Evolutionary Computation and Systems Chemistry, Springer, 2016, 15–28.

    Chapter  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to Stuart Kauffman for his inspiring ideas and for several discussions on various aspects of the criticality hypothesis. We also gratefully acknowledge useful discussions with David Lane, Alex Graudenzi and Chiara Damiani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Roli.

Additional information

This paper was recommended for publication by Editor DI Zengru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roli, A., Villani, M., Filisetti, A. et al. Dynamical Criticality: Overview and Open Questions. J Syst Sci Complex 31, 647–663 (2018). https://doi.org/10.1007/s11424-017-6117-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-017-6117-5

Keywords

Navigation