Skip to main content
Log in

Application of high-performance liquid chromatography with charged aerosol detection (LC–CAD) for unified quantification of synthetic cannabinoids in herbal blends and comparison with quantitative NMR results

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

The analysis of products which contain synthetic cannabinoids (SCs) is very challenging due to their diversity and rapidly changing SC structures, variable herbal matrices and, above all, inaccessibility of reference standards. Therefore, the aim of this study was to develop a method which allows quantification of SCs’ contents in herbal blends without their reference standards.

Methods

Identification of SCs was performed using liquid chromatographyhigh-resolution tandem mass spectrometry with a quadrupole time-of-flight analyser (LCQTOF-MS/MS). A liquid chromatography–charged aerosol detection (LCCAD) method with unified calibration for the quantification of SCs was developed and validated. Two available reference standards were used as universal standards. Quantitative analysis using a nuclear magnetic resonance spectroscopy method was also performed to externally validate the developed LCCAD method.

Results

All peaks of SCs observed in LCCAD chromatograms were identified by LCQTOF-MS/MS. Validation data and results from a CAD response evaluation indicated that the elaborated quantitative method was sufficiently accurate for the determination of SCs belonging to various chemical families. The LCCAD method turned out to be very flexible, because it was successfully applied for the analysis of 19 herbal products.

Conclusions

In this study, methods which enable identification and quantification of currently known SCs as well as novel unknown derivatives without their reference standards were developed. These methods can be applied to the control of suspect SC products and may support the risk assessment of SC presence on the market. To our knowledge, this is the first trial to use LC–CAD for unified quantification of SCs without their reference standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brents LK, Prather PL (2014) The K2/Spice phenomenon: emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products. Drug Metab Rev 46:72–85. https://doi.org/10.3109/03602532.2013.839700

    Article  CAS  PubMed  Google Scholar 

  2. Fattore L (2016) Synthetic cannabinoids—further evidence supporting the relationship between cannabinoids and psychosis. Biol Psychiatry 79:539–548. https://doi.org/10.1016/j.biopsych.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  3. Dresen S, Ferreirós N, Pütz M, Westphal F, Zimmermann R, Auwärter V (2010) Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom 45:1186–1194. https://doi.org/10.1002/jms.1811

    Article  CAS  PubMed  Google Scholar 

  4. Gurney SM, Scott KS, Kacinko SL, Presley BC, Logan BK (2014) Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs. Forensic Sci Rev 26:53–78

    CAS  PubMed  Google Scholar 

  5. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2017) Perspectives on drugs. Synthetic cannabinoids in Europe. http://www.emcdda.europa.eu/system/files/publications/2753/POD_Synthetic%20cannabinoids_0.pdf. Accessed 8 July 2017. (update: 06.06.2017)

  6. Archer RP, Treble R, Williams K (2011) Reference materials for new psychoactive substances. Drug Test Anal 3:505–514. https://doi.org/10.1002/dta.317

    Article  CAS  PubMed  Google Scholar 

  7. Choi H, Heo S, Choe S, Yang W, Park Y, Kim E, Chung H, Lee J (2013) Simultaneous analysis of synthetic cannabinoids in the materials seized during drug trafficking using GC–MS. Anal Bioanal Chem 405:3937–3944. https://doi.org/10.1007/s00216-012-6560-z

    Article  CAS  PubMed  Google Scholar 

  8. Znaleziona J, Ginterová P, Petr J, Ondra P, Válka I, Ševčík J, Chrastina J, Maier V (2015) Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques—a review. Anal Chim Acta 874:11–25. https://doi.org/10.1016/j.aca.2014.12.055

    Article  CAS  PubMed  Google Scholar 

  9. Scheidweiler KB, Huestis MA (2014) Simultaneous quantification of 20 synthetic cannabinoids and 21 metabolites, and semi-quantification of 12 alkyl hydroxy metabolites in human urine by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1327:105–117. https://doi.org/10.1016/j.chroma.2013.12.067

    Article  CAS  PubMed  Google Scholar 

  10. Akamatsu S, Mitsuhashi T (2014) MEKC–MS/MS method using a volatile surfactant for the simultaneous determination of 12 synthetic cannabinoids. J Sep Sci 37:304–307. https://doi.org/10.1002/jssc.201301132

    Article  CAS  PubMed  Google Scholar 

  11. Musah RA, Domin MA, Walling MA, Shepard JRE (2012) Rapid identification of synthetic cannabinoids in herbal samples via direct analysis in real time mass spectrometry. Rapid Commun Mass Spectrom 26:1109–1114. https://doi.org/10.1002/rcm.6205

    Article  CAS  PubMed  Google Scholar 

  12. Gottardo R, Chiarini A, Dal Prà I, Seri C, Rimondo C, Serpelloni G, Armato U, Tagliaro F (2012) Direct screening of herbal blends for new synthetic cannabinoids by MALDI-TOF MS. J Mass Spectrom 47:141–146. https://doi.org/10.1002/jms.2036

    Article  CAS  PubMed  Google Scholar 

  13. Ciolino LA (2015) Quantitation of synthetic cannabinoids in plant materials using high performance liquid chromatography with UV detection (validated method). J Forensic Sci 60:1171–1181. https://doi.org/10.1111/1556-4029.12795

    Article  CAS  PubMed  Google Scholar 

  14. Gamache PH (ed) (2017) Charged aerosol detection for liquid chromatography and related separation techniques. Wiley, Hoboken. https://doi.org/10.1002/9781119390725

  15. Vehovec T, Obreza A (2010) Review of operating principle and applications of the charged aerosol detector. J Chromatogr A 1217:1549–1556. https://doi.org/10.1016/j.chroma.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  16. Poplawska M, Blazewicz A, Bukowinska K, Fijalek Z (2013) Application of high-performance liquid chromatography with charged aerosol detection for universal quantitation of undeclared phosphodiesterase-5 inhibitors in herbal dietary supplements. J Pharm Biomed Anal 84:232–243. https://doi.org/10.1016/j.jpba.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  17. Stojanovic A, Lammerhofer M, Kogelnig D, Schiesel S, Sturm M, Galanski M, Krachler R, Keppler B, Lindner W (2008) Analysis of quaternary ammonium and phosphonium ionic liquids by reversed-phase high-performance liquid chromatography with charged aerosol detection and unified calibration. J Chromatogr A 1209:179–187. https://doi.org/10.1016/j.chroma.2008.09.017

    Article  CAS  PubMed  Google Scholar 

  18. Sun P, Wang X, Alquier L, Maryanoff CA (2008) Determination of relative response factors of impurities in paclitaxel with high performance liquid chromatography equipped with ultraviolet and charged aerosol detectors. J Chromatogr A 1177:87–91. https://doi.org/10.1016/j.chroma.2007.11.035

    Article  CAS  PubMed  Google Scholar 

  19. Lisa M, Lynen F, Holcapek M, Sandra P (2007) Quantitation of triacylglycerols from plant oils using charged aerosol detection with gradient compensation. J Chromatogr A 1176:135–142. https://doi.org/10.1016/j.chroma.2007.10.075

    Article  CAS  PubMed  Google Scholar 

  20. Granica S, Krupa K, Klebowska A, Kiss A (2013) Development and validation of HPLC-DAD-CAD-MS3 method for qualitative and quantitative standardization of polyphenols in Agrimoniae eupatoriae herba (Ph. Eur). J Pharm Biomed Anal 86:112–122. https://doi.org/10.1016/j.jpba.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  21. Rasanen I, Kyber M, Szilvay I, Rintatalo J, Ojanperä I (2014) Straightforward single-calibrant quantification of seized designer drugs by liquid chromatography–chemiluminescence nitrogen detection. Forensic Sci Int 237:119–125. https://doi.org/10.1016/j.forsciint.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  22. Laks S, Pelander A, Vuori E, Ali-Tolppa E, Sippola E, Ojanperä I (2004) Analysis of street drugs in seized material without primary reference standards. Anal Chem 76:7375–7379. https://doi.org/10.1021/ac048913p

    Article  CAS  PubMed  Google Scholar 

  23. Ojanperä I, Mesihää S, Rasanen I, Pelander A, Ketola RA (2016) Simultaneous identification and quantification of new psychoactive substances in blood by GC-APCI-QTOFMS coupled to nitrogen chemiluminescence detection without authentic reference standards. Anal Bioanal Chem 408:3395–3400. https://doi.org/10.1007/s00216-016-9461-8

    Article  PubMed  Google Scholar 

  24. Ojanperä S, Tuominen S, Ojanperä I (2007) Single-calibrant quantification of drugs in plasma and whole blood by liquid chromatography-chemiluminescence nitrogen detection. J Chromatogr B 856:239–244. https://doi.org/10.1016/j.jchromb.2007.06.005

    Article  Google Scholar 

  25. International Conference on Harmonization (ICH) (2005) Topic Q2 (R1): validation of analytical procedures: text and methodology. www.emea.europa.eu/pdfs/human/ich/038195en.pdf. Accessed 13 Mar 2016

  26. Holzgrabe U, Wawer I, Diehl B (2008) NMR spectroscopy in pharmaceutical analysis, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  27. Malz F, Jancke H (2005) Validation of quantitative NMR. J Pharm Biomed Anal 38:813–823. https://doi.org/10.1016/j.jpba.2005.01.043

    Article  CAS  PubMed  Google Scholar 

  28. McCarthy RS, Gamache PH, Asa DJ, Laws K, Cole RD, Woodcock MJ, Freeto SM (2005) HPLC analysis of non-volatile analytes using charged aerosol detection. LCGC N Am 23:150–161

    Google Scholar 

  29. Gorecki T, Lynen F, Szucs R, Sandra P (2006) Universal response in liquid chromatography using charged aerosol detection. Anal Chem 78:3186–3192. https://doi.org/10.1021/ac060078j

    Article  CAS  PubMed  Google Scholar 

  30. Kavanagh P, Grigoryev A, Savchuk S, Mikhura I, Formanovsky A (2013) UR-144 in products sold via the Internet: identification of related compounds and characterization of pyrolysis products. Drug Test Anal 5:683–692. https://doi.org/10.1002/dta.1456

    Article  CAS  PubMed  Google Scholar 

  31. Kacinko SL, Xu A, Homan JW, McMullin MM, Warrington DM, Logan BK (2011) Development and validation of a liquid chromatography–tandem mass spectrometry method for the identification and quantification of JWH-018, JWH-073, JWH-019, and JWH-250 in human whole blood. J Anal Toxicol 35:386–393. https:doi.org/10.1093/anatox/35.7.386

    Article  CAS  PubMed  Google Scholar 

  32. Bononi M, Belgi P, Tateo F (2011) Analytical data for identification of the cannabimimetic phenylacetylindole JWH-203. J Anal Toxicol 35:360–363. https:doi.org/10.1093/anatox/35.6.360

    Article  CAS  PubMed  Google Scholar 

  33. Denooz R, Vanheugen J-C, Frederich M, de Tullio P, Charlier C (2013) Identification and structural elucidation of four cannabimimetic compounds (RCS-4, AM-2201, JWH-203 and JWH-210) in seized products. J Anal Toxicol 37:56–63. https://doi.org/10.1093/jat/bks095

    Article  CAS  PubMed  Google Scholar 

  34. Behonick G, Shanks KG, Firchau DJ, Mathur G, Lynch CF, Nashelsky M, Jaskierny D, Meroueh C (2014) Four postmortem case reports with quantitative detection of the synthetic cannabinoid, 5F-PB-22. J Anal Toxicol 38:559–562. https://doi.org/10.1093/jat/bku048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vikingsson S, Josefsson M, Gréen H (2015) Identification of AKB-48 and 5F-AKB-48 metabolites in authentic human urine samples using human liver microsomes and time of flight mass spectrometry. J Anal Toxicol 39:426–435. https://doi.org/10.1093/jat/bkv045

    Article  CAS  PubMed  Google Scholar 

  36. Wurita A, Hasegawa K, Minakata K, Gonmori K, Nozawa H, Yamagishi I, Watanabe K, Suzuki O (2015) Identification and quantitation of 5-fluoro-ADB-PINACA and MAB-CHMINACA in dubious herbal products. Forensic Toxicol 33:213–220. https://doi.org/10.1007/s11419-015-0264-y

    Article  CAS  Google Scholar 

  37. Uchiyama N, Matsuda S, Wakana D, Kikura-Hanajiri R, Goda Y (2013) New cannabimimetic indazole derivatives, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA) identified as designer drugs in illegal products. Forensic Toxicol 31:93–100. https://doi.org/10.1007/s11419-012-0171-4

    Article  CAS  Google Scholar 

  38. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Shafran Y (2013) Analytical characterization of some synthetic cannabinoids, derivatives of indole-3-carboxylic acid. Forensic Sci Int 232:1–10. https://doi.org/10.1016/j.forsciint.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  39. The Drug Enforcement Administration’s Special Testing and Research Laboratory (2016) SWGDRUG monographs. http://www.swgdrug.org/monographs.htm. Accessed 28 Mar 2016

  40. Russell JJ, Heaton JC, Underwood T, Boughtflower R, McCalley DV (2015) Performance of charged aerosol detection with hydrophilic interaction chromatography. J Chromatogr A 1405:72–84. https://doi.org/10.1016/j.chroma.2015.05.050

    Article  CAS  PubMed  Google Scholar 

  41. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Morzherin Y, Shafran Y (2013) Identification and analytical properties of new synthetic cannabimimetics bearing 2,2,3,3-tetramethylcyclopropanecarbonyl moiety. Forensic Sci Int 226:62–73. https://doi.org/10.1016/j.forsciint.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  42. Tsujikawa K, Yamamuro T, Kuwayama K, Kanamori T, Iwata YT, Inoue H (2014) Thermal degradation of a new synthetic cannabinoid QUPIC during analysis by gas chromatography–mass spectrometry. Forensic Toxicol 32:201–207. https://doi.org/10.1007/s11419-013-0221-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by a grant from the National Research Centre in Poland (2013/09/B/ST4/00106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Agata Błażewicz or Elżbieta Bednarek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. For this type of study, informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popławska, M., Błażewicz, A., Kamiński, K. et al. Application of high-performance liquid chromatography with charged aerosol detection (LC–CAD) for unified quantification of synthetic cannabinoids in herbal blends and comparison with quantitative NMR results. Forensic Toxicol 36, 122–140 (2018). https://doi.org/10.1007/s11419-017-0392-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-017-0392-7

Keywords

Navigation